Tìm số tự nhiên n để phân số \(M=\frac{5n+17}{4n+13}\)
có giá trị lớn nhất.
Tìm giá trị lớn nhất đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2M=\frac{12n-6}{4n-6}=\frac{3(4n-6)+12}{4n-6}=3+\frac{12}{4n-6}$
$=3+\frac{6}{2n-3}$
Để $M$ lớn nhất thì $\frac{6}{2n-3}$ lớn nhất.
Điều này xảy ra khi $2n-3$ là số nguyên dương nhỏ nhất
$\Rightarrow 2n-3=1$
$\Rightarrow n=2$.
Ta có:
B
=
10
n
−
3
4
n
−
10
=
2
,
5
(
4
n
−
10
)
+
22
4
n
−
10
=
2
,
5
(
4
n
−
10
)
4
n
−
10
+
22
4
n
−
10
=
2
,
5
+
22
4
n
−
10
Vì n là số tự nhiên nên
B
=
2
,
5
+
22
4
n
−
10
đạt giá trị lớn nhất khi
22
4
n
−
10
đạt đạt giá trị lớn nhất.
Mà
22
4
n
−
10
đạt đạt giá trị lớn nhất khi 4n – 10 là số nguyên dương nhỏ nhất.
+) Nếu 4n – 10 = 1 thì 4n = 11 hay
n
=
11
4
(loại)
+) Nếu 4n – 10 = 2 thì 4n = 12 hay n = 3 (chọn)
Khi đó
B
=
2
,
5
+
22
2
=
13
,
5
Vậy B đạt giá trị lớn nhất là 13,5 khi n = 3
\(B=\frac{10n-3}{4n-10}=\frac{\frac{5}{2}.\left(4n-10\right)+22}{4n-10}=\frac{5}{2}+\frac{22}{4n-10}\)
Để B lớn nhất thì \(\frac{22}{4n-10}\) là số dương lớn nhất => 4n - 10 là số dương nhỏ nhất mà n là số tự nhiên
=> 4n - 10 = 2 => n = 3
\(B=\frac{10n-3}{4n-10}=\frac{10n-25}{4n-10}+\frac{22}{4n-10}=2,5+\frac{22}{4n+10}\)
B lớn nhất <=>\(\frac{22}{4n+10}\)là số dương lớn nhất<=>4n+10 nhỏ nhất mà 4n+10 phải khác 0 thì phân thức mới xác định<=>4n+10=1<=>n=-9/4
Khi đó B=2,5+22/1=2,5+22=24,5
Vậy n=-9/4 thì B đạt GTLN đó là 24,5
\(M=\frac{5n+17}{4n+13}=\frac{4n+13+n+4}{4n+13}=1+\frac{n+4}{4n+13}\)
Để M đạt GTLN thì \(\frac{n+4}{4n+13}\)Đạt GTLN \(\Rightarrow4n+13\) đạt GTNN dương
Ta có : \(4n+13=1\)
\(\Leftrightarrow4n=-12\)\(\Rightarrow n=-3\)
Vậy M đạt GTLN = 2 khi n=-3