Tìm các số tự nhiên x;y thỏa mãn \(|19x+5y|+1975=|19y+5x|+2014^x\)
cảm ơn!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A={4}
A có 1 phần tử
b: B={0;1}
B có 2 phần tử
c: \(C=\varnothing\)
C không có phần tử nào
d: D={0}
D có 1 phần tử
e: E={x|\(x\in N\)}
E có vô số phần tử
1.x=1,06;1,07;1,08;1,08;1,09;,1,10;1,11;1,12;..................................................................9,00
a, Ta có 8 : x = 2 ó x = 8 : 2 ó x = 4. Vậy tập hợp A cần tìm là A ={4} .
Số phần tử của tập hợp A là 1 phần tử
b, Ta có x + 3 < 5 ó x < 2, mà x ∈ ¥ nên x = 0 hoặc x = 1
Tập hợp B các số tự nhiên cần tìm là B ={0; 1}.
Số phần tử của tập hợp B là 2 phần tử
c, Ta có x – 2 = x + 2 ó 0.x = 4 ó x = ∅ . Tập hợp C = ∅
Số phần tử của tập hợp C là không có phần tử
d, Ta có x : 2 = x : 4 ó x = 0. Tập hợp D = {0}
Số phần tử của tập hợp D là 1 phần tử.
e, Ta có: x + 0 = x ó x = x (luôn đúng với mọi x ∈ ¥ )
Tập hợp E = {0;1;2;3;….}
Số phần tử của tập hợp E là vô số phần tử.
a/ 1,05 < x < 9,1
suy ra x = 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9
b/ x = 1 ; 3 ; 5 ; 7
c/ x = 3,401 ; 3,402 ; 3,403 ; 3,404 ; 3,405 ; 3,406..........
d/ x = 8
Nhớ k cho mình nhé! Thank you!!!
a) Để số tự nhiên x là số chẵn và 1,054<x<9,1 thì x = 2; 4; 6; 8
b) Để số tự nhiên x là số lẻ và x < 7,5 thì x = 1; 3; 5; 7
c) Để số thập phân x < 3,4 và x > 3,41 thì x = 3,401; 3.402; 3,403; 3,404; 3,405;...
d) Để x là số tự nhiên lớn nhất và x < 8,1 thì x = 1
Ta có:\(\left|19x+5y\right|+1975=\left|19y+5x\right|+2014^x\)
\(\Leftrightarrow\left|19x+5y\right|-\left|19y+5x\right|=2014^x-1975\)
Vì \(19x+5y-\left(19y+5x\right)=19x+5y-19y-5x=14x-14y⋮2\)
nên \(\left|19x+5y\right|-\left|19y+5x\right|⋮2\)\(\Rightarrow2014^x-1975⋮2\)
\(\Rightarrow2014^x\) lẻ\(\Rightarrow x=0\)
Thay x=0 vào ta có:\(\left|5y\right|-\left|19y\right|=-1974\)
Vì \(y\ge0\) nên \(\hept{\begin{cases}5y\ge0\\19y\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left|5y\right|=5y\\\left|19y\right|=19y\end{cases}}\)\(\Rightarrow5y-19y=-1974\)
\(\Rightarrow-14y=-1974\Rightarrow y=141\)
Vậy x=0,y=141 thỏa mãn
\(\left|19x+5y\right|+1975=\left|19y+5x\right|+2014^x\)
\(\Leftrightarrow1975-2014^x=\left|19y+5x\right|-\left|19x+5y\right|\)
\(\Leftrightarrow1975-2014^x=\left(\left|19y+5x\right|+19y+5x\right)-\left(\left|19x+5y\right|+19x+5y\right)-14\left(x+y\right)\left(1\right)\)
Ta có bổ đề:\(\left|a\right|+a\) là số chẵn với \(\forall a\in Z\)
\(\Rightarrow\left(1\right)\)chẵn/\(\Rightarrow2014^x\) lẻ \(\Rightarrow x=0\)
Thay \(x=0\) vào \(pt\) và kết hợp với \(x,y\in N\) thì tìm được \(x=0;y=141\)