K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

Câu 1 : 

Ta có : 

\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)

\(A=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{10000-1}{10000}\)

\(A=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{100^2-1}{100^2}\)

\(A=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{100^2}{100^2}-\frac{1}{100^2}\)

\(A=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{100^2}\)

\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)

Do từ \(2\) đến \(100\) có \(100-2+1=99\) số \(1\) nên : 

\(A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)< 99\) \(\left(1\right)\)

Đặt \(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) lại có : 

\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B< 1-\frac{1}{100}< 1\)

\(\Rightarrow\)\(A=99-B>99-1=98\)

\(\Rightarrow\)\(A>98\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(98< A< 99\)

Vậy A không phải là số nguyên 

Chúc bạn học tốt ~ 

7 tháng 4 2018

Bài 2 a) \(\Rightarrow M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}=\frac{1}{3}-\frac{1}{99}\)

\(=\frac{31}{99}\)

1 tháng 5 2017

Ta có :

\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)

\(A=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)

\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)\)

\(A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99\)\(\left(1\right)\)

gọi B là biểu thức trong ngoặc

Lại có :

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B< 1-\frac{1}{100}< 1\)

\(\Rightarrow A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99-\left(1-\frac{1}{100}\right)>98\)

\(\Rightarrow A>98\)\(\left(2\right)\)

từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(98< A< 99\)

vậy A không phải là số tự nhiên

4 tháng 5 2017

phần bạn đánh dấu (1) thì A<99 vì A= 99 trừ đi một số mà

27 tháng 12 2020

Đặt A =\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)

\(=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)\)

\(=99-\left(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\right)\)

Đặt B = \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\)

>\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\)

\(=\frac{1}{2}-\frac{1}{101}=\frac{99}{202}\)

Khi đó A = \(99-\left(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\right)< 99-\frac{99}{202}\approx98,5\)

=> A < 98,5 (1)

Lại có B = \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)

Khi đó A =\(99-\left(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{100.100}\right)>99-\frac{99}{100}=98,01\)

=> A > 98,01 (2)

Từ (1)(2) => 98,01 < A < 98,5 

=> A không là số nguyên

17 tháng 3 2016

\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{9999}{10000}=\frac{3.8.15....9999}{4.9.16....10000}=?\)

15 tháng 3 2018

A=1.3/2^2.2.4/3^2.3.5/4^2...99.101/100.100

A=(1.2.3...99/2.3.4...100).(3.4.5...101/2.3.4...100)

A=1/100.101/2

A=101/200

200.A=200.101/200

200.A=101

14 tháng 2 2020

\(Ta\) \(có\) :

\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)\(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{100^2-1}{100^2}\)

\(=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)

\(Đặt\) \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

Do A > 0 nên S < 99 (1)

Do A\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}\)

Suy ra \(S=99-A>99-\left(1-\frac{1}{100}\right)\)

\(\Rightarrow S>98+\frac{1}{100}\Rightarrow S>98\) (2)

Lập luận ra điều phải chứng minh

14 tháng 2 2020

\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)

\(\Rightarrow S=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)

\(\Rightarrow S=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+1-\frac{1}{10000}\)

\(\Rightarrow S=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)\)

\(\Rightarrow S=99-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)< 99.\)

\(\Rightarrow S< 99\) (1).

Đặt \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\)

\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

Ta có:

\(\left\{{}\begin{matrix}\frac{1}{2^2}< \frac{1}{1.2}\\\frac{1}{3^2}< \frac{1}{2.3}\\....\\\frac{1}{100^2}< \frac{1}{99.100}\end{matrix}\right.\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1-\frac{1}{100}\)

\(1-\frac{1}{100}< 1.\)

\(\Rightarrow A< 1.\)

\(\Rightarrow S>99-1\)

\(\Rightarrow S>98\) (2).

Từ (1) và (2) \(\Rightarrow98< S< 99.\)

\(\Rightarrow S\) không phải là số nguyên (đpcm).

Chúc bạn học tốt!

12 tháng 9 2020

N ở đâu hả bạn

12 tháng 9 2020

N là số tự nhiên đó

4 tháng 5 2017

\(\frac{3}{4}\)*\(\frac{8}{9}\)*\(\frac{15}{16}\)********\(\frac{9999}{10000}\)

\(\frac{1\cdot3}{2^2}\)*\(\frac{2\cdot4}{3^2}\)********\(\frac{99\cdot101}{100^2}\)

\(\frac{1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot99}{2\cdot3\cdot4\cdot\cdot\cdot\cdot100}\)\(\frac{3\cdot4\cdot5\cdot\cdot\cdot101}{2\cdot3\cdot4\cdot\cdot\cdot100}\)

\(\frac{1}{100}\)*\(\frac{101}{2}\)=\(\frac{101}{200}\)

4 tháng 5 2017

Ta có: A = \(\frac{3}{8}\)\(\frac{8}{9}\).\(\frac{15}{16}\). ... .\(\frac{9999}{10000}\)
\(\Rightarrow\) A = \(\frac{1.3}{2^2}\).\(\frac{2.4}{3^2}\)\(\frac{3.5}{4^2}\). ... . \(\frac{99.101}{100^2}\)
\(\Rightarrow\) A = \(\frac{1.111}{2.100}\)\(\frac{111}{200}\)
Vậy: A = \(\frac{111}{200}\).