K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2018

a, chứng minh EFGH là hình bình hành do có EF//HG (cùng song2 với AC) và HE//GF(cùng song2 BD)

mà có EG=HF=> EFGH là hình thoi (*)

ta có BD//HE=> góc HEF vuông (**)

từ (*)(**) => EFGH là hình vuông ( hình thoi có 1 góc vuông )

4 tháng 4 2018

A B C D E F G H M

a) Dễ dàng chứng minh được \(\Delta AEH=\Delta BFE=\Delta CGF=\Delta DHG\)

\(\Rightarrow EH=EF=FG=HG\)

=>EFGH là hình thoi

\(\Delta AEH\)vuông cân tại A =>\(\widehat{AEH}=45^0\)

\(\Delta BEF\)vuông cân tại B=>\(\widehat{BEF}=45^0\)

=>\(\widehat{HEF}=90^0\)

=> EFGH  là hình vuông

b) Ta chứng minh được : \(\Delta EBC=\Delta FCD\left(cgv.cgv\right)\)

\(\Rightarrow\widehat{BCE}=\widehat{CDF}\)

\(\Rightarrow\widehat{BCE}+\widehat{MCD}=\widehat{CDF}+\widehat{MCD}\)

\(\Rightarrow90^0=\widehat{MCD}+\widehat{CDM}\)

\(\Rightarrow180^0-\widehat{MCD}-\widehat{CDM}=\widehat{DMC}\)

\(\Rightarrow\widehat{DMC}=90^0hayDF\perp CE\)

gọi N là giao điểm của AG và DF 

cm tương tự \(DF\perp CE\)ta được AG\(\perp\)DF

=>GN//CM mà G là trung điểm của DC =>N là trung điểm của DM

\(\Delta\)ADM có AN vừa là đường cao vừa là đường phân giác =>\(\Delta ADM\)cân tại A

c)ta cm \(\Delta DMC~\Delta DCF\left(g.g\right)\Rightarrow\frac{DC}{DF}=\frac{CM}{CF}\)

\(\Rightarrow\frac{S_{DMC}}{S_{DCF}}=\left(\frac{DC}{DF}\right)^2\Rightarrow S_{DMC}=\left(\frac{DC}{DF}\right)^2\cdot S_{DCF}\)

Mà \(S_{DCF}=\frac{1}{2}DF\cdot DC=\frac{1}{4}DC^2\)

Vậy \(S_{DMC}=\frac{DC^2}{DF^2}\cdot\frac{1}{4}DC^2\)

Trong tam giác DCF theo định lý py ta go có:

\(DF^2=CD^2+CF^2=CD^2+\left(\frac{1}{2}AB\right)^2=CD^2+\frac{1}{4}CD^2=\frac{5}{4}CD^2\)

 Do đó \(S_{DMC}=\frac{CD^2}{\frac{5}{4}CD^2}\cdot\frac{1}{4}CD^2=\frac{1}{5}CD^2=\frac{1}{5}a^2\)

31 tháng 3 2016

bài của bạn gần giống bài của mình

13 tháng 11 2018

ghen j đồng bào

15 tháng 10 2016

A B C D F E M

Xét tam giác vuông là tam giác BEC và tam giác DCF có CD = BC , BE = CF = 1/2a

=> Tam giác BEC = tam giác DCF (hai cạnh góc vuông)

=> góc CDF = góc BCE mà góc CDF + góc DFC = 90 độ

=> góc ECF + góc DFC = 90 độ hay góc DMC = 90 độ => CE vuông góc DF

Ta chứng minh được tam giác MDC đồng dạng tam giác CDF (g.g)

Áp dụng định lí Pytago có \(DF=\sqrt{CD^2+FC^2}=\sqrt{a^2+\frac{a^2}{4}}=\frac{a\sqrt{5}}{2}\)

\(S_{CDF}=\frac{1}{2}CD.CF=\frac{1}{2}a.\left(\frac{a}{2}\right)=\frac{a^2}{4}\)

Suy ra \(\frac{S_{MDC}}{S_{CDF}}=\left(\frac{CD}{DF}\right)^2=\left(\frac{a}{\frac{a\sqrt{5}}{2}}\right)^2=\left(\frac{2}{\sqrt{5}}\right)^2=\frac{4}{5}\)

\(\Rightarrow S_{MDC}=\frac{4}{5}S_{CDF}=\frac{4}{5}.\frac{a^2}{4}=\frac{a^2}{5}\)

15 tháng 10 2016

chiu

tk nhe

xin do

bye

27 tháng 10 2018

A B C D E F

a. Chứng minh tam giác BCE = tam giác CDF (cgc): BE = CF=1/2 a ; góc B = góc C = 90 độ ; BC = CD= a
=> góc ECB = góc FDC => tam giác FCM đồng dạng với tam giác FDC (gg)
=> góc DCF = góc CMF =90 độ
=> đpcm
b.tam giác FCM đồng dạng với tam giác FDC => CM/CD=CF/DF
=> CD=CM.DF/CF hay a=CM.CE/CF ( vì DF =CE bởi tam giác BCE = tam giác CDF)
c.Chứng minh tam giác BCE = tam giác AKE (gcg):góc CEB = góc KEA ; BE = AE=1/2 a ; góc B = góc A = 90 độ 
=> BC = AK = a => AD = AK => A là trung điểm của tam giác MKD
=> DA = AM => tam giác MAD cân tại A
d.CM/CD=CF/DF => CM = CF.CD/DF hay (1/4.a^2)/DF
tam giác DMC đồng dạng với tam giác DCF (gg)=>DM/DC=DC/DF =>DM=DC.DC/DF hay DM=a^2/DF
=>CM.DM=(1/4 . a^4)/DF^2
tính được DF^2=5/4a^2
=> CM.DM=(1/4 . a^4)/(5/4a^2)=1/5.a^2
=>SDMC= 1/2.CM.DM=1/10.a^2