Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại D.
a) Cho biết BC =10cm, AB =6cm, AD = 3cm. Tính độ dài các đoạn thẳng AC, CD.
b) Vẽ DE vuông góc với BC tại E. Chứng minh tam giác ABD = EBD và tam giác BAE cân.
c) Gọi F là giao điểm của 2 đường thẳng AB và DE. So sánh DE và DF.
d) Gọi H là giao điểm và BD và CF. K là điểm trên tia đối của ta DF sao cho DK = DF, I là điểm trên đoạn thẳng CD sao cho CI = 2DI. Chứng minh rằng ba điểm K, H, I thẳng hàng.
Tg ABD =tg EBD ( cm trên) •> AD=DE( 2 cạnh tương ứng) (1)
Tg ADF vg tại A=> Góc A lớn nhất=> FD lớn nhất( Qh giữa góc và cạnh đối diện trong 1 tam giác)=> AD<FD(2)
Từ 1 và 2 => ED<FD
a) Tam giác ABC vuông tại A => AB2+AC2=BC2 ( theo định lý Pitago)
=> 62+Ac2=102 =>AC2=100-36=64=> AC= 8
Vì D nằm trên AC=> AD+DC= AC=> 3+DC=8=> DC=5(cm)