1.Cho E=\(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+n}\right)\)và F=\(\frac{n+2}{n}\)\(\forall\)\(n\inℕ^∗\)Tính \(\frac{E}{F}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(1+2+3+...+n=\frac{n.\left(n+1\right)}{2}\)
\(\Rightarrow1-\frac{1}{1+2+3+...+n}=1-1:\frac{n.\left(n+1\right)}{2}=1-\frac{2}{n.\left(n+1\right)}\)
\(=\frac{n.\left(n+1\right)-2}{n.\left(n+1\right)}=\frac{n^2+n-2}{n.\left(n+1\right)}=\frac{\left(n+2\right).\left(n-1\right)}{n.\left(n+1\right)}\) (*)
Từ (*)
\(\Rightarrow1-\frac{1}{1+2}=\frac{4.1}{2.3};1-\frac{1}{1+2+3}=\frac{5.2}{3.4};...;1-\frac{1}{1+2+3+...+n}=\frac{\left(n+2\right).\left(n-1\right)}{n.\left(n+1\right)}\)
\(\Rightarrow E=\frac{4.1}{2.3}.\frac{5.2}{3.4}...\frac{\left(n+2\right).\left(n-1\right)}{n.\left(n+1\right)}=\frac{4.1.5.2...\left(n+1\right).\left(n-2\right).\left(n+2\right).\left(n-1\right)}{2.3.3.4....\left(n-1\right).n.n.\left(n+1\right)}\)\(=\frac{n+2}{n.n}\)
\(\Rightarrow\frac{E}{F}=E:F=\left(\frac{n+2}{n.n}\right):\frac{n+2}{n}=\frac{n+2}{n.n}.\frac{n}{n+2}=\frac{1}{n}\)
\(\Rightarrow\frac{E}{F}=\frac{1}{n}\)
câu g)
\(G=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{121}-1\right).\)
\(=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}...\cdot\frac{120}{121}\)
\(=\frac{3.\left(2.4\right).\left(3.5\right)...\left(10.12\right)}{2.2.3.3.4.4.5.5....11.11}\)
\(=\frac{12}{3}=4\)
a)
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n-1}< 1\)
=>\(0< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\) không phải là số nguyên
mà n -1 là số nguyên
=> \(S_n=\frac{1^2-1}{1}+\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{n^2-1}{n^2}\)
\(=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)không là số nguyên
Bài 1
Ta có \(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}=\sqrt{\left(1+\frac{1}{2}-\frac{1}{3}\right)^2}\)
Tương tự như trên ta được
S = 1+1/2-1/3+1+1/3-1/4+...+1+1/99-1/100
= 98 + 1/2 - 1/100
= 9849/100