cho a/b = c/d (a.b.c.d khác 0). chứng minh a/b=a+c/b+d = a-c/b-d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt :
\(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(+,\dfrac{a}{b}=\dfrac{bk}{b}=k\)\(\left(1\right)\)
\(+,\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\left(2\right)\)
\(+,\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=\dfrac{k\left(b-d\right)}{b-d}=k\left(3\right)\)
Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Leftrightarrow\dfrac{a}{b}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
Ta có : a^2+b^2/c^2+d^2 = ab/cd
=> (a^2+b^2) . cd = (c^2+d^2). ab
=> a.a.c.d+b.b.c.d = c.c.a.b + d.d.a.b
=> a.a.c.d-c.c.a.b - d.d.a.b + b.b.c.d= 0
=> ac(ad - bc) - bd(ad - bc) = 0
=> (ac - bd)(ad - bc) = 0
=> ac - bd = 0 hoặc ad - bc = 0
=> ac = bd
=> a/b =c/d (đpcm)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\Leftrightarrow\frac{bk}{bk-b}=\frac{dk}{dk-d}\)
Xét VT \(\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\left(1\right)\)
Xét VP \(\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\left(2\right)\)
Từ (1) và (2) =>Đpcm
Lời giải:
Ta có:
\((ab+cd)^2=a^2b^2+c^2d^2+2abcd\)
\(=a^2b^2+c^2d^2-2abcd+4abcd\)
\(=(ab-cd)^2+4abcd\geq 4abcd=4\)
Vậy \((ab+cd)^2\geq 4\)
\(\Rightarrow ab+cd\geq \sqrt{4}=2\) (với \(ab+cd>0\))
Vậy......
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
Như vậy, \(\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\) (đpcm)