Cho các số thực x,y,z thỏa mãn: x+y+z=0;−1≤x,y,z≤1x+y+z=0;−1≤x,y,z≤1 Chứng minh rằng: \(x^2+y^4+z^6\text{≤2}\)
hộ mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
Lời giải:
$2\text{VT}=2(x+y+z)-4(xy+yz+xz)+8xyz$
$=(2x-1)(2y-1)(2z-1)+1$
Do $x,y,z\in [0;1]$ nên $-1\leq 2x-1, 2y-1, 2z-1\leq 1$
$\Rightarrow (2x-1)(2y-1)(2z-1)\leq 1$
$\Rightarrow 2\text{VT}\leq 2$
$\Rightarrow \text{VT}\leq 1$
Ta có đpcm.
Dấu "=" xảy ra khi $(x,y,z)=(1,1,1), (0,0,1)$ và hoán vị.
Do \(x\in\left[-1;2\right]\Rightarrow\)\(\left(x+1\right)\left(x-2\right)\le0\Leftrightarrow x^2\le x+2\)
Tương tự: \(y^2\le y+2\) ; \(z^2\le z+2\)
Cộng vế: \(x^2+y^2+z^2\le x+y+z+6=6\) (đpcm)
Mặt khác \(x;y;z\in\left[-1;2\right]\Rightarrow\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge0\)
\(\Leftrightarrow xyz+xy+yz+zx+x+y+z+1\ge0\)
\(\Leftrightarrow xyz+xy+yz+zx+1\ge0\)
\(\Leftrightarrow2xyz+2\ge-2\left(xy+yz+zx\right)\)
\(\Leftrightarrow2xyz+2\ge\left(x^2+y^2+z^2\right)-\left(x+y+z\right)^2\)
\(\Leftrightarrow2xyz+2\ge x^2+y^2+z^2\) (đpcm)
Lời giải:
Ta thấy:
$|x-1|\geq 0$ với mọi $x\in\mathbb{R}$
$|y-2|\geq 0$ với mọi $y\in\mathbb{R}$
$(z-x)^2\geq 0$ với mọi $z,x\in\mathbb{R}$
Do đó, để tổng của những số trên bằng $0$ thì:
$|x-1|=|y-2|=(z-x)^2=0$
$\Leftrightarrow x=z=1; y=2$
\(\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{x+z}{y}=\dfrac{x^2y+xy^2+y^2z+yz^2+x^2z+xz^2}{xyz}=\dfrac{-3xyz}{xyz}=-3\)
đề cho xy+yz+xz=0 nhân cả 2 vế với -z
=>-xyz-\(z^2\left(y+x\right)\)=0
=>-xyz=\(z^2x+z^2y\)
cmtt bạn nhân với -y và -z
=>-3xyz=\(x^2y+xy^2+y^2z+yz^2+x^2z+xz^2\)