K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2017

Hình đa giác TenDaGiac1: DaGiac(A, B, 4) Hình đa giác TenDaGiac1: DaGiac(A, B, 4) Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng h: Đoạn thẳng [C, D] Đoạn thẳng i: Đoạn thẳng [D, A] Đoạn thẳng j: Đoạn thẳng [D, B] Đoạn thẳng k: Đoạn thẳng [A, C] Đoạn thẳng n: Đoạn thẳng [A, N] Đoạn thẳng p: Đoạn thẳng [C, N] Đoạn thẳng r: Đoạn thẳng [O, M] Đoạn thẳng q: Đoạn thẳng [O, E] Đoạn thẳng s: Đoạn thẳng [E, M] Đoạn thẳng t: Đoạn thẳng [B, N] Đoạn thẳng b: Đoạn thẳng [C, H] Đoạn thẳng f_1: Đoạn thẳng [H, M] A = (-2.56, 2.02) A = (-2.56, 2.02) A = (-2.56, 2.02) B = (1.54, 1.98) B = (1.54, 1.98) B = (1.54, 1.98) Điểm C: DaGiac(A, B, 4) Điểm C: DaGiac(A, B, 4) Điểm C: DaGiac(A, B, 4) Điểm D: DaGiac(A, B, 4) Điểm D: DaGiac(A, B, 4) Điểm D: DaGiac(A, B, 4) Điểm O: Giao điểm đường của j, k Điểm O: Giao điểm đường của j, k Điểm O: Giao điểm đường của j, k Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm M: Điểm trên g Điểm N: Giao điểm đường của l, m Điểm N: Giao điểm đường của l, m Điểm N: Giao điểm đường của l, m Điểm E: Giao điểm đường của d', f Điểm E: Giao điểm đường của d', f Điểm E: Giao điểm đường của d', f Điểm H: Giao điểm đường của a, t Điểm H: Giao điểm đường của a, t Điểm H: Giao điểm đường của a, t

a) Xét tam giác OEB và tam giác OMC có:

OB = OC (Vì ABCD là hình vuông)

EB = MC (gt)

\(\widehat{OCM}=\widehat{OBE}\left(=45^o\right)\)

\(\Rightarrow\Delta OEB=\Delta OMC\left(c-g-c\right)\Rightarrow OE=OM;\widehat{EOB}=\widehat{MOC}\)

Ta có \(\widehat{MOC}+\widehat{MOB}=\widehat{BOC}=90^o\Rightarrow\widehat{EOM}=\widehat{EOB}+\widehat{MOB}=90^o\)

Vậy tam giác OEM vuông cân.

b)  Ta luôn có \(\Delta CMN\sim\Delta BMA\left(g-g\right)\Rightarrow\frac{CM}{BM}=\frac{MN}{MA}\) 

Lại có \(CM=BE\), mà AB = BC nên AE = MB

Vậy thì \(\frac{CM}{MC}=\frac{EB}{AE}\)

Xét tam giác ABN có \(\frac{AE}{EB}=\frac{AM}{MN}\) , áp dụng định lý Ta-let đảo, ta có EM // BN.

c) Giả sử OM cắt BN tại H'. Khi đó ta có \(\widehat{OME}=\widehat{MH'B}=45^o\)

Suy ra \(\Delta OMC\sim\Delta H'MB\left(g-g\right)\Rightarrow\frac{MC}{BM}=\frac{OC}{H'B}\)

Xét tam giác OMB và tam giác CMH' có :

\(\frac{MC}{BM}=\frac{OC}{H'B}\left(cmt\right)\)

Góc \(\widehat{OMB}=\widehat{CMH'}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta OMB\sim\Delta CMH'\left(c-g-c\right)\Rightarrow\widehat{CH'M}=\widehat{OBM}=45^o\)

Vậy thì \(\widehat{BH'C}=\widehat{BH'M}+\widehat{MH'C}=45^o+45^o=90^o\)

Hay \(CH'\perp BN\)

Vậy H trùng H' hay O, M , H thẳng hàng.

14 tháng 6 2015

a) Xét tam giác OEB và tam giác OMC có:

  góc OBE = góc OCM (t/c đường chéo hv)

  OC = OB ( nt)

  EB = MC (gt)

  Vậy tam giác OEB = tam giác OMC (c-g-c)

=> EO = MO (1) và góc EOB = góc MOC

                        mà góc BOC = góc BOM + góc MOC = 90 độ

                     => góc EOM = góc EOB + góc BOM = 90 độ (2)

Từ (1),(2) => tam giác OEM vuông cân

b) Ta có: AB//CN (N thuộc DC)

ÁP dụng định lí Ta - let tá được:

 AM/MN= BM/MC mà BM=AE và MC=BE (gt)

=> AM/MN = AE/BE

=> EM//BN (đ/l Ta - let đảo)

Phần còn lại mình còn đang suy nghĩ.

10 tháng 2 2017
Câu cuối hơi khó
19 tháng 3 2017

cuoi cau nay hoi kho mot chut nhung van de dang

17 tháng 7 2019

A B C D O E M H N

a) Xét tam giác OEB và tam giác OMC có:

OB = OC (Do ABCD là hình vuông)

EB = MC (gt)

\(\widehat{OCM}=\widehat{OBE}=45^o\)

\(\Rightarrow\Delta OEB=\Delta OMC\left(c-g-c\right)\Rightarrow OE=OM;\widehat{EOB}=\widehat{MOC}\)

Ta có:

\(\widehat{MOC}+\widehat{MOB}=\widehat{BOC}=90^o\Rightarrow\widehat{EOM}=\widehat{EOB}+\widehat{MOB}=90^o\)

Vậy tam giác OEM vuông cân.

P/s: 2 câu dưới mai làm cho :v

19 tháng 7 2019

b) Ta luôn có: \(\Delta CMN~\Delta BMA\left(g-g\right)\Rightarrow\frac{CM}{BM}=\frac{MN}{MA}\)

Lại có CM = BE, mà AB = BC nên AE = MB

Vậy thì \(\frac{CM}{MC}=\frac{EB}{AE}\)

Xét tam giác ABN có \(\frac{AE}{EB}=\frac{AM}{MN}\), áp dụng định lí Ta-let đảo, ta có EM // BN

c) Giả sử OM cắt BN tại H'. Khi đó ta có \(\widehat{OME}=\widehat{MH'B}=45^o\)

\(\Rightarrow\Delta OMC~\Delta H'MB\left(g-g\right)\Rightarrow\frac{MC}{BM}=\frac{OC}{H'B}\)

Xét tam giác OMB và tam giác CMH' có:

\(\frac{MC}{BM}=\frac{OC}{H'B}\left(cmt\right)\)

\(\widehat{OMB}=\widehat{CMH'}\) ( Hai góc đối đỉnh)

\(\Rightarrow\Delta OMB~\Delta CMH'\left(c-g-c\right)\Rightarrow\widehat{CH'M}=\widehat{OBM}=45^o\)

Vậy thì \(\widehat{BH'C}=\widehat{BH'M}+\widehat{MH'C}=45^0+45^0=90^0\)

Hay \(CH'\perp BN\)

=> H trùng H' => O, M, N thẳng hàng

20 tháng 11 2017

https://diendan.hocmai.vn/threads/hinh-hoc-lop-8.422552/

Xét ABM và NCM có

^ABM=^NCM=900 

^AMB=^MNC(đối đỉnh) 

=>ABM đồng dạng NCM (g-g) 

=> CM/BM=MN/AM

=> CM/BC=MN/AN 

=> BE/AB=MN/AN

=> ME // BN (định líTTalet đảo) 

Câu c để pham trung thanh làm

7 tháng 3 2017

cái này như là đề hsg toán 8 nghệ an 2013-14 , search trên youtube có