Tìm số chính phương có 4 chữ số, biết số đó chia hết 9 và chữ số hàng đơn vị là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số chính phương cần tìm là \(\overline{abcd}\left(0\le b,c,d\le9;1\le a\le9;a,b,c,d\inℕ\right)\)
Ta dễ có: \(1000\le\overline{abcd}\le9999\Rightarrow\sqrt{1000}\le\sqrt{\overline{abcd}}\le\sqrt{9999}\Rightarrow32\le\sqrt{\overline{abcd}}\le99\)suy ra căn bậc hai của số \(\overline{abcd}\)là số tự nhiên có hai chữ số.
Đặt \(\sqrt{\overline{abcd}}=\overline{mn}\left(m,n\inℕ;0\le n\le9;3\le m\le9\right)\)
Theo đề thì chữ số hàng đơn vị của số cần tìm là số nguyên tố nên \(d\in\left\{2;3;5;7\right\}\)mà số chính phương không có tận cùng bằng \(\left\{2;3;7\right\}\)nên d = 5 do đó n = 5 (Vì số chính phương có tận cùng bằng 5 thì căn bậc hai của nó cũng tận cùng bằng 5)
Lúc này ta được: \(\sqrt{\overline{abc5}}=\overline{m5}\)
Ta có đánh giá quen thuộc rằng số chính phương chia 3 thì hoặc dư 0 hoặc dư 1 do đó \(m+5\)chia 3 dư 0 hoặc dư 1 (theo đề thì căn bậc hai của số cần tìm có tổng các chữ số là số chính phương)
Xét từng trường hợp thì \(\overline{m5}\in\left\{45;55;75;85\right\}\)nhưng chỉ có số 45 có tổng các chữ số là số chính phương (9) nên ta chọn số 45\(\Rightarrow\overline{abcd}=45^2=2025\)
Vậy số chính phương có 4 chữ số cần tìm là 2025
Gọi số nguyên tố có hai chữ số cần tìm là: ab (o<= b<a <=9)
Theo bài ra ta có: ab + ba = n^2 (n thuộc N*)
<=> 11a + 11b = n^2
<=> 11(a+b) = n^2
=>n^2 chia hết cho 11 => n^2 chia hết cho 121 thì mới tồn tại n
=> (a+b) chia hết cho 11
Mà o< (a+b)<=18
=> a+b = 11
Do a>b => (a,b) = (9,2) , (8,3) , (7,4) , (6,5)
Mặt khác ; ab nguyên tố => ab=83
Vậy số cần tìm là 83
Số đó là 2025 và 5625 nha bạn
Bạn làm cụ thể ra giùm mk nha!