So sánh M=\(\frac{3^{2017}+5}{3^{2015}+5}\) và N= \(\frac{3^{2015}+1}{3^{2013}+1}\)
ai bít lm bài này ko
bạn nào giỏi zo giúp mik đi nha mik cần gấp
tks các bạn nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét bài toán :
So sánh \(\frac{a}{b}\)và \(\frac{a+m}{b+m}\)( a>b , m>0)
Có \(\frac{a}{b}=\frac{a\left(b+m\right)}{b\left(b+m\right)}=\frac{ab+am}{b\left(b+m\right)}\)
\(\frac{a+m}{b+m}=\frac{b\left(a+m\right)}{b\left(b+m\right)}=\frac{ab+bm}{b\left(b+m\right)}\)
Mà a>b => am > bm => \(\frac{ab+am}{b\left(b+m\right)}>\frac{ab+bm}{b\left(b+m\right)}\)hay \(\frac{a}{b}>\frac{a+m}{b+m}\)
Áp dụng : \(A=\frac{3^{2017}+5}{3^{2015}+5}>\frac{3^{2017}+5+4}{3^{2015}+5+4}=\frac{3^{2017}+9}{3^{2015}+9}=\frac{3^2\left(3^{2017}+9\right)}{3^2\left(3^{2015}+9\right)}\)
\(=\frac{3^{2015}+1}{3^{2013}+1}=B\)
=> A > B
\(A=1+5^2+5^3+...+5^{2015}+5^{2016}\)
\(5A=5+5^3+5^4+...+5^{2016}+5^{2017}\)
\(4A=\left(5+5^3+5^4+...+5^{2016}+5^{2017}\right)-\left(1+5^2+5^3+...+5^{2015}+5^{2016}\right)\)
\(=5+5^{2017}-\left(1+5^2\right)\)
\(=4+5^{2017}-5^2\)
\(A=\frac{4+5^{2017}-5^2}{4}\)
Ta có : 5A = 5 + 5^3 + 5^4 + ... + 5^2016 + 5^2017
=> 5A - A = ( 5 + 5^3 + 5^4 + ... + 5^2016 + 5^2017 ) - ( 1 + 5^2 + 5^3 + ... + 5^2015 + 5^2016 )
=> 4A = 4 + 5^2 + 5^2017
=> A = ( 4 + 5^2 + 5^2017 )/4
a) \(\left(x-\frac{1}{2}\right)^4=\frac{1}{81}\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^4=\left(\frac{1}{3}\right)^4\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=\frac{1}{3}\\x-\frac{1}{2}=\frac{-1}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{5}{6}\\x=\frac{1}{6}\end{cases}}\)
Vậy ...
Gọi tử số của \(S\)là :\(A=1+2+2^2+2^3+...+2^{2015}\)
\(2A=2+2^2+2^3+...+2^{2016}\)
\(2A-A=\left(2+2^2+2^3+...2^{2016}\right)-\left(1+2+2^2+...+2^{2015}\right)\)
\(A=1-2^{2016}\)
\(\Rightarrow S=\frac{1-2^{2016}}{1-2^{2016}}=1\)