K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AD=DB

=>S ADE=S BDE

b: S ABE=2/3*36=24cm2

=>S ADE=12cm2

Bài 1:

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

mà AB>AC

nên BD>CD

9 tháng 3 2017

B A C D E

a) (câu này làm vậy không biết được không..)

Ta có: \(\hept{\begin{cases}\widehat{BAD}=\widehat{DAE}\left(gt\right)\\AD:chung\left(gt\right)\end{cases}}\Rightarrow AB=AE\) (Giống như là dựa vào tạo góc..)

b) (Vẽ hình chắc chưa ổn lắm, bạn tự lấy thước ra chỉnh)

 Xét tam giác ABE có AB = AE (cmt) => tam giác ABE cân tại A

=> AD vừa là đường cao vừa là trung tuyến

=> BD = DE

18 tháng 7 2021

Bạn ơi cho mik hỏi tại sao AD vừa là đường cao vừa là trung tuyến vậy.

Tính chất của đường cao là phải vuông góc với cạnh nó cắt chứ. Mong bạn trả lời giúp ????

13 tháng 5 2019

Tam giác ABC cân tại A => AB = AC

=> Góc ABD = góc ACE

Xét tam giác ABD và tam giác ACE

AB = AC ( cmt )

Góc ABD = góc ACE ( cmt )

BD = CE ( gt )

=> Tam giác ABD = tam giác ACE ( c.g.c )

=> Góc BAD = góc CAE ( 2 góc tương ứng )

=> AD = AC ( 2 cạnh tương ứng )

Xét tam giác ADE và tam giác ACE

AD = AC ( cmt )

DE = EC( gt )

AE chung

=> tam giác ADE= tam giác ACE ( c.c.c )

=> góc DAE = góc EAC ( 2 góc tương ứng )

Ta có: góc BAD = góc EAC ( cmt )

Góc DAE = góc EAC ( cmt )

=> góc BAD = góc DAE = góc EAC

Hình và GT,KL chắc bạn tự làm đc

Xét 2 tam giác:\(\Delta ABD\)và \(\Delta AEC\)

=> \(\Delta ABD\)\(\Delta ACE\)(c-g-c)

=> \(BÂD=EÂC\)(2 góc tương ứng)

Trên tia AD lấy điểm F sao cho D là trung điểm của AF,ta có \(\Delta ADE=\Delta FDB\)(c.g.c),do đó \(DÂE=DFB\)và AE = BF

Vì \(ÂEC>ÂBC=ÂCB\)vì thế trong \(\Delta AEC\)thì AE > AC.Như vậy trong \(\Delta ABF\)thì BF < AB,suy ra \(BÂD=BFD\)

Vậy \(BÂD\)= góc CAE < góc DAE

~Hok tốt~

30 tháng 10 2021

a, Vì \(\left\{{}\begin{matrix}AB=AC\\AD=AE\\\widehat{BAC}.chung\end{matrix}\right.\) nên \(\Delta ABD=\Delta ACE\left(c.g.c\right)\)

b, Vì \(\Delta ABD=\Delta ACE\) nên \(\widehat{ABD}=\widehat{ACE}\)

Mà \(\widehat{ABC}=\widehat{ACB}\) nên \(\widehat{ABC}-\widehat{ABD}=\widehat{ACB}-\widehat{ACE}\)

Do đó \(\widehat{IBC}=\widehat{ICB}\) nên tam giác IBC cân tại I

c, \(AD=AE\) nên tg ADE cân tại A

Do đó \(\widehat{AED}=\dfrac{180^0-\widehat{BAC}}{2}\)

Mà tg ABC cân tại A nên \(\widehat{ABC}=\dfrac{180^0-\widehat{BAC}}{2}\)

\(\Rightarrow\widehat{AED}=\widehat{ABC}\)

Mà 2 góc này ở vị trí đồng vị nên DE//BC