Cho tam giác ABC cân tại A, D và E \(\in\)cạnh BC sao cho BD=DE=EC
a) Chứng minh : \(\Delta ADE\)là tam giác cân
b) So sánh : AC và AD
c) So sánh : \(\widehat{EAC}\)và \(\widehat{DAE}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AD=DB
=>S ADE=S BDE
b: S ABE=2/3*36=24cm2
=>S ADE=12cm2
Bài 1:
Xét ΔABC có AD là phân giác
nên BD/AB=CD/AC
mà AB>AC
nên BD>CD
a) (câu này làm vậy không biết được không..)
Ta có: \(\hept{\begin{cases}\widehat{BAD}=\widehat{DAE}\left(gt\right)\\AD:chung\left(gt\right)\end{cases}}\Rightarrow AB=AE\) (Giống như là dựa vào tạo góc..)
b) (Vẽ hình chắc chưa ổn lắm, bạn tự lấy thước ra chỉnh)
Xét tam giác ABE có AB = AE (cmt) => tam giác ABE cân tại A
=> AD vừa là đường cao vừa là trung tuyến
=> BD = DE
Tam giác ABC cân tại A => AB = AC
=> Góc ABD = góc ACE
Xét tam giác ABD và tam giác ACE
AB = AC ( cmt )
Góc ABD = góc ACE ( cmt )
BD = CE ( gt )
=> Tam giác ABD = tam giác ACE ( c.g.c )
=> Góc BAD = góc CAE ( 2 góc tương ứng )
=> AD = AC ( 2 cạnh tương ứng )
Xét tam giác ADE và tam giác ACE
AD = AC ( cmt )
DE = EC( gt )
AE chung
=> tam giác ADE= tam giác ACE ( c.c.c )
=> góc DAE = góc EAC ( 2 góc tương ứng )
Ta có: góc BAD = góc EAC ( cmt )
Góc DAE = góc EAC ( cmt )
=> góc BAD = góc DAE = góc EAC
Hình và GT,KL chắc bạn tự làm đc
Xét 2 tam giác:\(\Delta ABD\)và \(\Delta AEC\)
=> \(\Delta ABD\)= \(\Delta ACE\)(c-g-c)
=> \(BÂD=EÂC\)(2 góc tương ứng)
Trên tia AD lấy điểm F sao cho D là trung điểm của AF,ta có \(\Delta ADE=\Delta FDB\)(c.g.c),do đó \(DÂE=DFB\)và AE = BF
Vì \(ÂEC>ÂBC=ÂCB\)vì thế trong \(\Delta AEC\)thì AE > AC.Như vậy trong \(\Delta ABF\)thì BF < AB,suy ra \(BÂD=BFD\)
Vậy \(BÂD\)= góc CAE < góc DAE
~Hok tốt~
a, Vì \(\left\{{}\begin{matrix}AB=AC\\AD=AE\\\widehat{BAC}.chung\end{matrix}\right.\) nên \(\Delta ABD=\Delta ACE\left(c.g.c\right)\)
b, Vì \(\Delta ABD=\Delta ACE\) nên \(\widehat{ABD}=\widehat{ACE}\)
Mà \(\widehat{ABC}=\widehat{ACB}\) nên \(\widehat{ABC}-\widehat{ABD}=\widehat{ACB}-\widehat{ACE}\)
Do đó \(\widehat{IBC}=\widehat{ICB}\) nên tam giác IBC cân tại I
c, \(AD=AE\) nên tg ADE cân tại A
Do đó \(\widehat{AED}=\dfrac{180^0-\widehat{BAC}}{2}\)
Mà tg ABC cân tại A nên \(\widehat{ABC}=\dfrac{180^0-\widehat{BAC}}{2}\)
\(\Rightarrow\widehat{AED}=\widehat{ABC}\)
Mà 2 góc này ở vị trí đồng vị nên DE//BC