K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2018

A B C M H l

a, Xét t/g BAM và t/g BHM có: góc BAM = góc CAM (gt)

=> AM = MH (quan hệ giữa góc và cạnh đối diện)

b, Ta có: góc BAC = 90 độ (gt)

góc BHM = 90 độ (MH _|_ BC)

=> góc BAC = góc BHM 

Xét t/g AIM và t/g HCM có: góc BAC = góc BHM (cmt)

=> IM = MC (quan hệ giữa góc và cạnh đối diện)

20 tháng 10 2016

à quên không vẽ hình cũng được

19 tháng 3 2018

hình bạn tự vẽ nha

a)Xét tam giác ACM và tam giác HCM có

góc MAC = góc MHC(=90 độ)

Góc HCM= góc ACM(giả thiết)

Cạnh MC chung

=>Tam giác ACM=tam giác HCM

=>MA=MH (2 cạnh tương ứng)(đpcm)

b) Xét tam giác HMB và tam giác AMI có

góc BMH = góc MAI(=90 độ)

MA=MH(thao phần a)

góc BMH= góc AMI(đối đỉnh)

=>tam giác HMB=tam giác AMI

=>MB=MI(2 cạnh tương ứng)

do đó tam giác MIB cân tại M

+) vì tam giác ACM = tam giác HCM(thao phần a)

=>CA=CH(2 cạnh tương ứng)(1)

ví tam gaics HMB=tam giác AMI(chứng minh trên)

=>HB=AI(2 cạnh tương ứng)(2)

Từ (1) và (2) =>

CA+AI=CH+HB

hay CI=CB

Do đó tam giác ICB cân tại C

19 tháng 3 2018

A B C H M I

a)Xét tam giác AMC và HMC

có góc MAC=MHC (=90 độ)

MC chung

góc ACM= HCM

=> tam giác AMC=HMC (ch-gn)

=> MA=MH

b) Xét tam giác AMI và HMB có

có góc MAI=MHB

AM=MH(cmt)

góc AMI=HMB

=> tam giác AMI = HMB

=> MI=MB => tam giác IMB cân

Xét tam giác BIC có AH vuông góc BC; BA vuông góc IC

có AB và IH cắt nhau tại M => M là trực tâm của tam giác BIC

=> CM là đường cao đồng thời là đường phân giác của tam giác BIC => tam giác BIC cân

7 tháng 5 2018

A B C M k D

a: Xét ΔAMB và ΔAMC có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó: ΔAMB=ΔAMC

b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

\(\widehat{HAM}=\widehat{KAM}\)

Do đó: ΔAHM=ΔAKM

Suy ra: MH=MK