Phân tích đa thức thành nhân tử: x4+2.x3-13.x2-14x+24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(g,x^4-16=\left(x^2-4\right)\left(x^2+4\right)=\left(x-2\right)\left(x+2\right)\left(x^2+4\right)\\ i,-x^2+10x-25=-\left(x-5\right)^2\\ k,x^3+3x^2+3x+1-27z^3\\ =\left(x+1\right)^3-27z^3\\ =\left(x+1-3z\right)\left[\left(x+1\right)^2+3z\left(x+1\right)+9z^2\right]\\ =\left(x-3z+1\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\\ m,\left(x+y\right)^2-25\left(x+y\right)+24=\left(x+y-5\right)^2-1=\left(x+y-4\right)\left(x+y-6\right)\)
g. x4 - 16
<=> x4 - 42
<=> (x2)2 - 42
<=> (x2 - 4)(x2 + 4)
i. -x2 + 10x - 25
<=> -(x2 - 10x + 25)
<=> -(x2 -10x + 52)
<=> -(x - 5)2
a: \(x^2-y^2-x-y\)
\(=\left(x-y\right)\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-1\right)\)
f: \(x^3-5x^2-5x+1\)
\(=\left(x+1\right)\left(x^2-x+1\right)-5x\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-6x+1\right)\)
`a)x^3-8x^2+16x`
`=x(x^2-8x+16)`
`=x(x-4)^2`
`b)x^2+4y^2+2x-4y-4xy-24`
`=(x-2y)^2+2(x-2y)-24`
`=(x-2y)^2-4(x-2y)+6(x-2y)-24`
`=(x-2y-4)(x-2y+6)`
`c)x^4+x^3-x^2-2x-2`
`=x^4-2x^2+x^3-2x+x^2-2`
`=x^2(x^2-2)+x(x^2-2)+x^2-2`
`=(x^2-2)(x^2+x+1)`
b: \(\left(x^2+4\right)^2-16x^2\)
\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)^2\cdot\left(x+2\right)^2\)
c: \(x^5-x^4+x^3-x^2\)
\(=x^4\left(x-1\right)+x^2\left(x-1\right)\)
\(=x^2\left(x-1\right)\left(x^2+1\right)\)
Lời giải:
a. Bạn xem lại đề
b. \((x^2+4)^2-16x^2=(x^2+4)^2-(4x)^2=(x^2+4-4x)(x^2+4+4x)\)
\(=(x-2)^2(x+2)^2\)
c.
\(x^5-x^4+x^3-x^2=x^4(x-1)+x^2(x-1)=(x^4+x^2)(x-1)\)
\(=x^2(x^2+1)(x-1)\)
x4+2.x3-13.x2-14x+24
=x3.(x+2)-13x2+12x-26x+24
=x3.(x+2)-x.(13x-12)-2.(13x-12)
=x3.(x+2)-(13x-12)(x+2)
=(x+2)(x3-13x+12)
=(x+2)(x3-x-12x+12)
=(x+2)[x.(x2-1)-12.(x-1)]
=(x+2)[x.(x-1)(x+1)-12.(x-1)]
=(x+2)(x-1)[x.(x+1)-12]
=(x+2)(x-1)(x2+x-12)
=(x+2)(x-1)(x2-3x+4x-12)
=(x+2)(x-1)[x.(x-3)+4.(x-3)]
=(x+2)(x-1)(x-3)(x+4)