Xét tổng T= \(\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}\).Hãy so sánh T với 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn tham khảo tạm ở đây nhé
https://olm.vn/hoi-dap/question/994432.html
^^
bạn tham khảo tại đây nhé
http://olm.vn/hoi-dap/question/994432.html
^-^
Ta so sánh từng số hạng :
\(\frac{\sqrt{2}-\sqrt{1}}{1+2}=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\left(1+2\right)\left(\sqrt{2}+\sqrt{1}\right)}=\frac{1}{\left(1+2\right)\left(\sqrt{2}+\sqrt{1}\right)}< \frac{1}{2}\)
\(\frac{\sqrt{3}-\sqrt{2}}{2+3}=\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{\left(2+3\right)\left(\sqrt{3}+\sqrt{2}\right)}=\frac{1}{\left(2+3\right)\left(\sqrt{2}+\sqrt{3}\right)}< \frac{1}{2}\)
..........................................................................................................................................................................................
\(\frac{\sqrt{2015}-\sqrt{2014}}{2014+2015}=\frac{\left(\sqrt{2015}-\sqrt{2014}\right)\left(\sqrt{2015}+\sqrt{2014}\right)}{\left(2014+2015\right)\left(\sqrt{2015}+\sqrt{2014}\right)}=\frac{1}{\left(2014+2015\right)\left(\sqrt{2015}+\sqrt{2015}\right)}< \frac{1}{2}\)
Vì mỗi số hạng của M đều nhỏ hơn 1/2 nên M < 1/2
Bài này mình làm chưa đúng nhé :) Để lát mình làm cách khác.
Ta có :
\(T=\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}\)
\(\frac{1}{2}T=\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2015}{2^{2015}}\)
\(T-\frac{1}{2}T=\left(\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}\right)-\left(\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2015}{2^{2015}}\right)\)
\(\frac{1}{2}T=1+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2015}{2^{2014}}-\frac{2}{2^2}-\frac{3}{2^3}-\frac{4}{2^4}-...-\frac{2015}{2^{2015}}\)
\(\frac{1}{2}T=1+\left(\frac{3}{2^2}-\frac{2}{2^2}\right)+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+...+\left(\frac{2015}{2^{2014}}-\frac{2014}{2^{2014}}\right)-\frac{2015}{2^{2015}}\)
\(\frac{1}{2}T=1+\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\right)-\frac{2015}{2^{2015}}\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\)
\(2A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\)
\(2A-A=\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2013}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2014}}\right)\)
\(A=\frac{1}{2}-\frac{1}{2^{2014}}\)
Mà \(\frac{1}{2^{2014}}>0\)
\(\Rightarrow\)\(A=\frac{1}{2}-\frac{1}{2^{2014}}< \frac{1}{2}\)
\(\Leftrightarrow\)\(1+A-\frac{2015}{2^{2015}}< 1+\frac{1}{2}-\frac{1}{2^{2014}}-\frac{2015}{2^{2015}}\)
\(\Leftrightarrow\)\(\frac{1}{2}T< \frac{3}{2}-\left(\frac{1}{2^{2014}}+\frac{2015}{2^{2015}}\right)\)
Mà \(\frac{1}{2^{2014}}+\frac{2015}{2^{2015}}>0\)
\(\Rightarrow\)\(\frac{1}{2}T< \frac{3}{2}\)
\(\Rightarrow\)\(\frac{1}{2}T.2< \frac{3}{2}.2\)
\(\Rightarrow\)\(T< 3\) ( đpcm )
Vậy \(T< 3\)
Bạn xem đúng không nhé, chúc bạn học tốt ~
thank