cho góc aOb =144 độ , tia Oc là tia phân giác của góc đó , vẽ các tia Om và On nằm trong góc aOb sao cho góc aOm = bOn = 20 độ a. chứng tỏ Oc là tia phân giác của góc mOn b. vẽ tia (Ob,) là tia đối của tia Ob, so sánh góc (aOb,) với aOc và bOc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Vì OC là tia phân giác của \(\widehat{AOB}\)
\(\Rightarrow\widehat{AOC}=\widehat{BOC}=\frac{\widehat{AOB}}{2}=\frac{144^o}{2}=72^o\)
Ta có :
\(\widehat{AOC}=72^o\Rightarrow\widehat{MOC}=\widehat{NOC}=52^o\)
\(\Rightarrow\)OC là tia phân giác của \(\widehat{MON}\)
b) (P/s : Hình như ý này hơi thừa :v)
c) Vì \(\widehat{AOB}=144^o;\widehat{AOC}=72^o;\widehat{BOC}=72^o\)
\(\Rightarrow\widehat{AOB}>\widehat{AOC}=\widehat{BOC}\)
a) ta có AOCˆ=BOCˆ=12AOBˆ=1442=72oAOC^=BOC^=12AOB^=1442=72o (OCOC là tia phân giác AOBˆAOB^)
ta có : MOC=CONˆˆ=72−20=52oMOC=CON^^=72−20=52o (AOMˆ=BONˆ=20o)(AOM^=BON^=20o)
⇒⇒ OCOC là tia phân giác của MONˆMON^ (MOCˆ=CONˆ=52o)(MOC^=CON^=52o)(ĐPCM)
b) ta có AOB′ˆ=B′OBˆ−AOBˆ=180−144=36oAOB′^=B′OB^−AOB^=180−144=36o
ta có : AOCˆ=BOCˆ=72oAOC^=BOC^=72o (chứng minh trên)
⇒⇒ AOB′ˆ<AOCˆ=BOC