Cho tam giác ABC nhọn, kẻ AH vuông góc với BC( H thuộc BC). Cho biết AB=20cm,AH=12cm,CH=5cm. Tính độ dài cạnh BC,AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Pi ta go vào tam giác AHB ,có:
\(AB=\sqrt{AH^2+HB^2}=\sqrt{12^2+5^2}=13\left(cm\right)\)
Áp dụng định lý Pi ta go vào tam giác AHC ,có:
\(HC=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16\left(cm\right)\)
Chu vi tam giác ABC là:
\(13+20+5+16=54\left(cm\right)\)
Câu 1:
Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
202 = AH2 + 162
400 = AH2 + 256
AH2 = 400 - 256
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
AC2 = 122 + 52
AC2 = 144 + 25
AC2 = 169
AC = \(\sqrt{169}\)= 13 (cm)
Vậy AH = 12 cm
AC = 13 cm
Bài 2:
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
152 = AH2 + 92
225 = AH2 + 81
AH2 = 225 - 81
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHB vuông tại, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
AB2 = 122 + 52
AB2 = 144 + 25
AB2 = 169
AB = \(\sqrt{169}\)= 13 (cm)
Vậy AB = 13 cm
Theo định lí Pytago tam giác AHC vuông tại H
\(HC=\sqrt{AC^2-AH^2}=16cm\)
Theo định lí Ptago tam giác AHB vuông tại H
\(AB=\sqrt{AH^2+HB^2}=13cm\)
-> BC = HB + HC = 5 + 16 = 21 cm
Vì AHC vuông
=> AC^2 = AH^2 + HC^2 ( định lý pytago đảo )
=> AC^2 = 144 + 25
=> AC^2 = 169
=> AC = 13
Áp dụng định lí Py-ta-go vào tam giác ABH ta được:
\(AB^2=AH^2+BH^2\)
Mà AB=20cm; AH=12cm
\(\Rightarrow20^2=12^2+BH^2\)
\(\Rightarrow400=144+BH^2\)
\(\Rightarrow BH^2=400-144\)
\(\Rightarrow BH^2=256\)
\(\Rightarrow BH=16\)(do BH >0) (cm)
Có BH+HC=BC
Mà BH=16cm;HC=5cm
=> BC=16+5=21(cm)
Vậy BC=21cm
k cho mình nha