Cho biểu thức : A = \( {mn^2 +n^2(n^2-m)+1 \over m^2n^4+2n^4+m^2+2}\)
a)CMR với mọi giá trị m và n, A luôn luôn nhận giá trị dương.
b)Tìm giá trị của các biến để A đạt giá trị lớn nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Δ=(2m-2)^2-4(2m-5)
=4m^2-8m+4-8m+20
=4m^2-16m+24
=4m^2-16m+16+8
=(2m-4)^2+8>=8>0 với mọi m
=>PT luôn có 2 nghiệm pb
2: Để pt có hai nghiệm trái dấu thì 2m-5<0
=>m<5/2
3: A=(x1+x2)^2-2x1x2
=(2m-2)^2-2(2m-5)
=4m^2-8m+4-4m+10
=4m^2-12m+14
=4(m^2-3m+7/2)
=4(m^2-2m*3/2+9/4+5/4)
=4(m-3/2)^2+5>=5
Dấu = xảy ra khi m=3/2
`1)` Ptr có: `\Delta'=[-(m-1)]^2-2m+5`
`=m^2-4m+4+2=(m-2)^2+2 > 0 AA m`
`=>` Ptr có `2` nghiệm phân biệt `AA m`
`2)` Ptr có `2` nghiệm trái dấu `<=>ac < 0`
`<=>2m-5 < 0<=>m < 5/2`
`3) AA m` ptr có `2` nghiệm phân biệt
`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m-2),(x_1.x_2=c/a=2m-5):}`
Ta có: `A=x_1 ^2+x_2 ^2`
`<=>A=(x_1+x_2)^2-2x_1.x_2`
`<=>A=(2m-2)^2-2(2m-5)`
`<=>A=4m^2-8m+4-4m+10`
`<=>A=4m^2-12m+14`
`<=>A=(2m-3)^2+5 >= 5 AA m`
`=>A_[mi n]=5`
Dấu "`=`" xảy ra `<=>2m-3=0<=>m=3/2`
a) \(A=\dfrac{mn^2+n^2\left(n^2-m\right)+1}{m^2n^4+2n^4+m^2+2}\)
\(A=\dfrac{mn^2+n^4-mn^2+1}{n^4\left(m^2+2\right)+m^2+2}=\dfrac{n^4+1}{\left(m^2+2\right)\left(n^4+1\right)}=\dfrac{1}{m^2+2}\)
b) CM \(\dfrac{1}{m^2+2}>0\)
ta có \(\left\{{}\begin{matrix}m^2+2>0\\1>0\end{matrix}\right.\forall m\in R\)
\(\Rightarrow\dfrac{1}{m^2+2}>0\forall m\in R\)
vậy đpcm
c) \(A=\dfrac{1}{m^2+2}=\dfrac{2}{2m^2+4}=\dfrac{m^2+2-m^2}{2m^2+4}=\dfrac{1}{2}-\dfrac{m^2}{2m^2+4}\le\dfrac{1}{2}\forall m\in R\)
dấu '=' xảy ra khi m=0
vậy \(A_{max}=\dfrac{1}{2}\) khi m=0
1/ Sửa đề a+b=1
\(M=\left(a+b\right)\left(a^2-ab+b^2\right)+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left[\left(a+b\right)^2-3ab\right]+3ab\left[\left(a+b\right)^2-2ab\right]+6a^2b^2\left(a+b\right)\)
Thay a+b=1 vào M ta được:
\(M=1-3ab+3ab\left[1-2ab\right]+6a^2b^2\)
\(=1-3ab+3ab-6a^2b^2+6a^2b^2=1\)
2/ Đặt \(A=\frac{2n^2+7n-2}{2n-1}=\frac{\left(2n^2-n\right)+\left(8n-4\right)+2}{2n-1}=\frac{n\left(2n-1\right)+4\left(2n-1\right)+2}{2n-1}=n+4+\frac{2}{2n-1}\)
Để \(A\in Z\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta có bảng:
2n-1 | 1 | -1 | 2 | -2 |
n | 1 | 0 | 3/2 (loại) | -1/2 (loại) |
Vậy n={1;0}