Cho tam giác ABC có góc A ^ = 110 ° . Đường trung trực của các cạnh AB và AC cắt nhau tại I. Chứng minh:
a) tam giác BIC cân;
b) B I C ^ = 2 ( 180 ° - B A C ^ ) và tính số đo góc B I C ^ .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)
b) Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔBEC=ΔCDB(cạnh huyền-góc nhọn)
Suy ra: \(\widehat{BCE}=\widehat{DBC}\)(hai góc tương ứng)
hay \(\widehat{IBC}=\widehat{ICB}\)
Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)
nên ΔIBC cân tại I(Định lí đảo của tam giác cân)
\(\Leftrightarrow IB=IC\)(hai cạnh bên)
Xét ΔBAI và ΔCAI có
BA=CA(ΔABC cân tại A)
AI chung
IB=IC(cmt)
Do đó: ΔBAI=ΔCAI(c-c-c)
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)(hai góc tương ứng)
c) Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: IB=IC(cmt)
nên I nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy AI là đường trung trực của BC(đpcm)
a)gọi trung điểm của AB là H, của BC là I.
xét \(\Delta\) HBD và \(\Delta\) HAD có:
HB=HA
góc BHD= góc AHD=90độ
HD(chung)
suy ra 2 tam giac tren = nhau(c.g.c)
suy ra góc B=góc DAH\(\Rightarrow\) \(\Delta\) ABD là tam giác cân
chứng minh tương tự vs 2 tam giác EAI và ECI(c.g.c)
suy ra góc EAI= góc ECI\(\Rightarrow\) tam giác ACE là tam giác cân
câu b đợi tí mh nghĩ đã
m bị điên à tk 'nhóc quậy phá' ??? Đường trung trực của AB và AC cắt nhau tại I r mak m còn gọi trung điểm của BC là I