Cho tam giác ABC có 3 híc nhọn nội tiếp (O;R) (AB < AC) ba đường cao AD,BE,CF cắt nhau tại H.Đường thẳng EF cắt BC tại K 1.Cm AEHF là tứ giác nội tiếp 2.Cm DB.DC = DH.DA
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
7 tháng 6 2021
a) Có \(\widehat{BFC}=\widehat{CKB}=90^0\)
=> Tứ giác BCFK nội tiếp
b)Có \(\widehat{BCK}=\widehat{BFK}\)( vì tứ giác BCFK nội tiếp )
mà \(\widehat{BCE}=\widehat{BDE}=\dfrac{1}{2}sđ\stackrel\frown{EB}\)
=> \(\widehat{BFK}=\widehat{BDE}\) mà hai góc nằm ở vị trí hai góc đồng vị
=> KF//DE
1, Xét tứ giác AEHF có: \(\widehat{AFH}+\widehat{AEH}=90^o+90^o=180^o\)
Hai góc \(\widehat{AFH}\) và \(\widehat{AEH}\) đối nhau
\(\Rightarrow\) Tứ giác AEHF nội tiếp (dhnb tứ giác nt)
2, Xét tứ giác AEDB có: \(\widehat{AEB}\) = \(\widehat{ADB}\) = 90o
Hai góc có đỉnh kề nhau cùng nhìn AB
\(\Rightarrow\) Tứ giác AEDB nội tiếp (dhnb tứ giác nội tiếp)
\(\Rightarrow\) \(\widehat{EBD}=\widehat{EAD}\) (2 góc nt cùng chắn 1 cung)
Xét \(\Delta\)HBD và \(\Delta\)CAD có: \(\widehat{HDB}=\widehat{CDA}=90^o\)
\(\widehat{HBD}=\widehat{CAD}\) (cmt)
\(\Rightarrow\) \(\Delta\)HBD ~ \(\Delta\)CAD (gg)
\(\Rightarrow\) \(\dfrac{HD}{CD}=\dfrac{BD}{AD}\) (tỉ số đồng dạng)
\(\Rightarrow\) DB.DC = DH.DA (đpcm)
Chúc bn học tốt!