Cho tam giác MNP vuông tại M, MN = 10cm; MP = 8cm. Vẽ đường trung tuyến MK của tam giác MNP.
a) Tính MK?
b) Gọi E, F lần lượt là trung điểm của MN, MP. Chứng minh tứ giác MEKF là hình chữ nhật.
c) Gọi I là giao điểm của MK và EF; J là trung điểm của EP. Chứng minh IJ vuông góc với MN và tính IJ.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔMNP và ΔHMP có:
Góc MPN chung
Góc NMP = góc MHP (= \(90^o\))
⇒ ΔMNP ~ ΔHMP (g.g)
b) Áp dụng định lí Pytago vào Δ vuông MNP:
\(MP^2=NP^2-MN^2\)
\(MP^2=10^2-6^2\)
\(MP^2=64\)
⇒ MP = 8
Xét ΔMNP có ND là phân giác ⇒ \(\dfrac{MD}{MN}=\dfrac{DP}{NP}\)
hay \(\dfrac{MD}{6}=\dfrac{DP}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{MD}{6}=\dfrac{DP}{10}=\dfrac{MD+DP}{6+10}=\dfrac{MP}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
⇒ \(\dfrac{DP}{10}=\dfrac{1}{2}\) ⇒ DP = \(\dfrac{10}{2}\) = 5
a)Xét tam giác MNP vuông tại M.Theo định lí pytago:
MP2=NP2−MN2=102−82=36
=> MP=6(cm)
b) Ta có:
sinN=MPNP=610=35
cosN=MNNP=810=45
tgN=MPMN=68=34
cotgN=MNMP=86=43
=>sinP=cosN=45;cosP=sinN=35;tgP=cotgN=43;cotgP=tgN=34
Xét \(\Delta MNP\left(\widehat{A}=90^0\right)\)có:
\(PM^2=PN^2+NM^2\)( định lý py-ta-go )
\(\Leftrightarrow8^2=10^2+MN^2\)
Đề sai, bởi vì không thể cạnh huyền lại bé hơn cạnh góc vuông được??