K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2021

Kẻ BH // với AC

Ta có :

AB=BD

AH//AC

=>BH là đường trung bình của tam giác ADK

=> BH =1/2 AK

Xét ΔBHM và ΔKMC có :

KMC^ = BMH^ (đối đỉnh)

CM=MB

ˆMBH=ˆCKM ( so le trong )

=> ΔBHM và ΔKMC (g-c-g)

=> KC=BH = 1/2 AK

Hay AK= 2 KC

1 tháng 10 2021

Kẻ \(BH\text{//}AC\), ta có :

\(AB=BD\)

\(AH\text{//}AC\)

\(\Rightarrow BH\) là đường trung bình của  \(\bigtriangleup ADK\)

\(\Rightarrow BH=\frac{1}{2}AK\)

Xét \(\bigtriangleup BHM\) và \(\bigtriangleup KMC\) có

\(\widehat{KMC}=\widehat{BMH}\) (đđ)

\(CM=MC\)

\(\widehat{MBH}=\widehat{CKM}\) (so le trong)

\(\Rightarrow\bigtriangleup BHM\) và \(\bigtriangleup KMC\) (g.c.g)

\(\Rightarrow KC=BH=\frac{1}{2}AK\) hay \(AK=2KC\)

5 tháng 10 2019

Bài 2:

a) Xét 2 \(\Delta\) \(ABM\)\(CNM\) có:

\(AM=CM\) (vì M là trung điểm của \(AC\))

\(\widehat{AMB}=\widehat{CMN}\) (vì 2 góc đối đỉnh)

\(BM=NM\) (vì M là trung điểm của \(BN\))

=> \(\Delta ABM=\Delta CNM\left(c-g-c\right).\)

=> \(AB=CN\) (2 cạnh tương ứng)

=> \(\widehat{BAM}=\widehat{NCM}\) (2 góc tương ứng)

Ta có: \(\widehat{BAM}+\widehat{NCM}=180^0\) (vì 2 góc kề bù)

\(\widehat{BAM}=90^0\left(gt\right)\)

=> \(90^0+\widehat{NCM}=180^0\)

=> \(\widehat{NCM}=180^0-90^0\)

=> \(\widehat{NCM}=90^0.\)

=> \(\widehat{BAM}=\widehat{NCM}=90^0\)

=> \(CN\perp AB.\)

b) Xét 2 \(\Delta\) \(AMN\)\(CMB\) có:

\(AM=CM\) (như ở trên)

\(\widehat{AMN}=\widehat{CMB}\) (vì 2 góc đối đỉnh)

\(MN=MB\) (như ở trên)

=> \(\Delta AMN=\Delta CMB\left(c-g-c\right)\)

=> \(AN=BC\) (2 cạnh tương ứng)

=> \(\widehat{ANM}=\widehat{CBM}\) (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AN\) // \(BC.\)

Chúc bạn học tốt!

5 tháng 10 2019

Hỏi đáp Toán

17 tháng 5 2022

A B C D M P N E F

Ta có M, N, P là trung điểm của AB; AC; BC nên

MN là đường trung bình của tg ABC => MN//BC

NP là đường trung bình của tg ABC => NP//AB

MP là đường trung bình của tg ABC => MP//AC

Xét tg PMD có 

PD=PM => tg PMD cân tại P \(\Rightarrow\widehat{PMD}=\widehat{PDM}\) (góc ở đáy tg cân)

Mà MN//BC (cmt) \(\Rightarrow\widehat{NMD}=\widehat{PDM}\) (góc so le trong)

\(\Rightarrow\widehat{PMD}=\widehat{NMD}\) => MD là phân giác của \(\widehat{NMP}\) (1)

Xét tg PNE có

PE=PN => tg PNE cân tại P \(\Rightarrow\widehat{PNE}=\widehat{PEN}\) (góc ở đáy tg cân)

Mà MN//BC (cmt) \(\Rightarrow\widehat{MNE}=\widehat{PEN}\) (góc so le trong)

\(\Rightarrow\widehat{PNE}=\widehat{MNE}\) => NE là phân giác của \(\widehat{MNP}\) (2)

Xét tg NFP có

NF=PE=PN => tg NFP cân tại N\(\Rightarrow\widehat{NPF}=\widehat{NFP}\) (góc ở đáy tg cân)

Mà MP//AC (cmt) \(\Rightarrow\widehat{MPF}=\widehat{NFP}\) (góc so le trong)

\(\Rightarrow\widehat{NPF}=\widehat{MPF}\) => PE là phân giác của \(\widehat{MPN}\) (3)

Xét tg DEF

Từ (1) (2) (3) => DM; NE; PF đồng quy (trong tg 3 đường phân giác đông quy)

 

17 tháng 4 2017
Cho tam giác ABC,Trên tia đối của tia BA lấy điểm D sao cho BD = BA,Trên cạnh BC lấy điểm E sao cho BE = 1/3BC,Gọi K là giao điểm của AE và CD,Chứng minh DK = KC,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7
18 tháng 4 2017

ai giup minh cau 2a khg

chiu nay co kiem tra rui

giup minh vskhocroikhocroikhocroi