- So sánh A= 33.10³/2³.5.10³+7000 & B= 3774/5217
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co \(\frac{33.10^3}{2^3.10^3+7000}=\frac{33.10^3}{8.10^3+7.10^3}=\frac{33.10^3}{15.10^3}=\frac{33}{15}>\frac{3774}{5217}\)
\(\frac{33.10^3}{2^3.5.10^3+7000}=\frac{33.10^3}{40.10^3+7.10^3}=\frac{33.10^3}{10^3.47}=\frac{33}{47}\)
\(\frac{3774}{5217}=\frac{34}{47}\)
Do đó VT<VP
\(\frac{33.10^3}{2^3.5.10^3+7000}=\frac{33.10^3}{2^3.5.10^3+7.10^3}=\frac{33.10^3}{10^3\left(2^3.5+7\right)}=\frac{33}{8.5+7}=\frac{33}{47}\)
\(\frac{3774}{5217}=\frac{3774:111}{5217:111}=\frac{34}{47}\)
Vì \(\frac{33}{47}< \frac{34}{47}\Rightarrow\frac{33.10^3}{2^3.5.10^3+7000}< \frac{3774}{5217}\)
\(\frac{33.10^3}{2^3.5.10^3+7000}=\frac{33.10^3}{8.5.10^3+7.10^3}\)
=\(\frac{33.10^3}{10^3\left(40+7\right)}=\frac{33}{47}\)
\(\frac{3774}{5217}=\frac{111.34}{111.47}=\frac{34}{47}\)
Vậy: \(\frac{3774}{5217}>\frac{33.10^3}{2^3.5.10^3+7000}\)
\(A=\frac{33\cdot10^3}{2^3\cdot5\cdot10^3+7000}=\frac{33\cdot10^3}{2^3\cdot5\cdot10^3+7\cdot10^3}=\frac{33\cdot10^3}{10^3(2^3\cdot5+7)}=\frac{33\cdot10^3}{10^3\cdot47}=\frac{33}{47}\)
\(B=\frac{3774}{5217}=\frac{34\cdot111}{47\cdot111}=\frac{34}{47}\)
\(=>\frac{33}{47}< \frac{34}{47}\)nên \(A< B\)
u3hfhfhfjjfjfjFegyvdydvvydcvyvyddvvdvyrvvyvrbrvyfvybrv bbcbfbfbchrubdvh dvubudvbudvbvudbudvbudvubevbudvbudvubdvbduburvubrvubrvubruvbubrvburvbururvubvrbyrvbu jjfhfhvhvvhvhvhhfhffhjvjf(&h&7