Cho \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}};B=\frac{1}{2}\).so sánh A và B
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{1}{3^2}+\frac{1}{3^4}+...+\frac{1}{3^{100}}\right)-\left(\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(3^2A=3^2\left(\frac{1}{3^2}+\frac{1}{3^4}+...+\frac{1}{3^{100}}\right)-3^2\left(\frac{1}{3}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(9A=\left(1+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(3+\frac{1}{3}+...+\frac{1}{3^{97}}\right)\)
\(9A-A=\left(1-\frac{1}{3^{100}}\right)-\left(3-\frac{1}{3^{99}}\right)\)
\(8A=1-3=-2\)
A=\(\frac{-2}{8}=\frac{-1}{4}\)
\(B=4\left|\frac{-1}{4}\right|+\frac{1}{3^{100}}=1+\frac{1}{3^{100}}=1\)
Vậy B=1
Ta có : \(A=\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+....+\frac{1}{3^{98}}-\frac{1}{3^{100}}\)(1)
=> 32.A = \(1-\frac{1}{3^2}+\frac{1}{3^4}-\frac{1}{3^8}+...+\frac{1}{3^{96}}-\frac{1}{3^{98}}\)(2)
Lấy (2) cộng (1) theo vế ta có :
32.A + A = \(\left(\frac{1}{3^2}-\frac{1}{3^4}+\frac{1}{3^6}-\frac{1}{3^8}+...+\frac{1}{3^{98}}-\frac{1}{3^{100}}\right)+\left(1-\frac{1}{3^2}+\frac{1}{3^4}-\frac{1}{3^6}+...+\frac{1}{3^{96}}-\frac{1}{3^{98}}\right)\)
10A = \(1-\frac{1}{3^{100}}\)
=> A = \(\left(1-\frac{1}{3^{100}}\right):10=\frac{1}{10}-\frac{1}{3^{100}.10}=0,1-\frac{1}{3^{100}.10}< 0,1\)
=> A < 0,1 (ĐPCM)
1) \(+2x+3y⋮17\)
\(\Rightarrow26x+39y⋮17\)
\(\Rightarrow\left(9x+5y\right)+17x+34y⋮17\)
Mà \(17x+34y⋮17\)
\(\Rightarrow9x+5y⋮17\)
\(+9x+5y⋮17\)
\(\Rightarrow36x+20y⋮17\)
\(\Rightarrow\left(2x+3y\right)+34x+17y⋮17\)
Mà \(34x+17y⋮17\)
\(\Rightarrow2x+3y⋮17\)
b) A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
3A=\(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
3A-A=\(1-\frac{1}{3^{99}}\)
2A=\(1-\frac{1}{3^{99}}\)
vì 2A<1
=> A<\(\frac{1}{2}\)
\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) ta có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A< 1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(A< 1\)
Chúc bạn học tốt ~