Vẽ tam giác ABC có độ dài các cạnh là:AB=4cm;AC=8cm và AD là đường phân giác của góc A.
Tính tỉ số diện tích của tam giác ABD và diện tích của tam giác ACD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có: AB2 + AC2 = 32 + 42 = 25 = 52 = BC2
⇒ ΔABC vuông tại A (Định lý Pytago đảo)
⇒ Diện tích tam giác ABC bằng:
(với k là tỉ số đồng dạng).
Lại có tỉ số diện tích bằng bình phương tỉ số đồng dạng
⇒ A’B’ = 3.AB = 3.3 = 9 (cm)
B’C’ = 3.BC = 3.5 = 15 (cm)
C’A’ = 3.CA = 3.4 = 12 (cm)
Vậy độ dài ba cạnh của tam giác lần lượt là 9cm, 12cm, 15cm.
Theo bài ra ta có: Độ dài các cạnh góc vuông tỉ lệ với 3 và 4. Nên ta có:
\(\frac{AB}{3}=\frac{AC}{4}\) \(\Rightarrow\left(\frac{AB}{3}\right)^2=\left(\frac{AC}{4}\right)^2\) \(\Rightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)
Theo định lí Py-ta-go, tam giác vuông ABC có cạnh huyền BC \(\Rightarrow AB^2+AC^2=BC^2=4^2=16\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{16}{25}\)
\(\Rightarrow\frac{AB^2}{9}=\frac{16}{25}\Rightarrow AB^2=5,76\Rightarrow AB=2,4\left(cm\right)\)
\(\frac{AC^2}{16}=\frac{16}{25}\Rightarrow AC^2=10,24\Rightarrow AC=3,2\left(cm\right)\)
Vậy AB = 2,4 cm
AC = 3,2 cm
BC = 4 cm
Xét ΔABC có:
ˆA=ˆB+ˆC=60o+30o=90o
⇒ΔABC vuông tại A
Có AB là góc đối diện với ˆC=30o
⇒AB=12BC=12.4=2(cm)
Vậy AB=2cm
Ta có \(AB^2+AC^2=3^2+4^2=25\)
\(BC^2=5^2=25\)
\(\Rightarrow AB^2+AC^2=BC^2\)Áp dụng pi- ta - go đảo ta có :
\(\Delta ABC\)vuông tại A
\(\Rightarrow\widehat{BAC}=90^o\)
NHẬN XÉT \(AB^2+AC^2=3^2+4^2=25=5^2=BC^2\)
Nên áp dụng định lý Pytago đảo ta có tam giác ABC vuông tại A
Vậy góc BAC bằng \(90^o\)
\(\dfrac{S_{ABD}}{S_{ACD}}=\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{4}{8}=\dfrac{1}{2}\)