Cho △ ABC vuông tại A, đường cao AH
a) CM: △ABH∼△CAH
b) Tia phân giác của góc HAC cắt BC tại Q. Biết AH=6cm; AC=10cm. Tính HC, AQ
c) Tia phân giác của góc AHC cắt AQ tại E. Tia phân giác của góc ABH và góc AHB cắt nhau tại I. CM: góc HIE = góc ABH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xét tam giác ABC và tam giác HBA có:
góc A= góc H= 90o
góc B chung
=> tam giác ABC ~ tam giác HBA (g.g)
=> \(\dfrac{AB}{BC}\)=\(\dfrac{BH}{AB}\)
=> AB2= BH.BC
a) Áp dụng định lí Pytago vào \(\Delta\)ABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=15^2+20^2=625\)
hay BC=25(cm)
Vậy: BC=25cm
Tam giác ABC vuông tại A ﴾gt﴿
=> góc BAD + DAC = 90\(^0\)﴾1﴿
Tam giác HAD vuông tại H có:
góc HDA + HAD = 90\(^0\) ﴾2﴿
Mà góc HAD = góc DAC ﴾ vì AD là p/g của HAC ﴿ ﴾3﴿
Từ ﴾1﴿ ﴾2﴿ và ﴾3﴿ => góc BAD = góc BDA => tam giác ABD cân tại B
=> AB=BD﴾ t/c tam giác cân ﴿
Tam giác ABC có AH là đường cao :
AB 2 = BH * BC ﴾ Hệ thức lượng﴿
<=> AB 2 = ﴾ BD‐6﴿ * BC
<=> AB 2 = ﴾AB‐6﴿ * 25
<=> AB 2 ‐25AB + 150 = 0
<=> ﴾ AB‐10﴿ * ﴾AB‐15﴿=0
<=> AB=10 hoặc AB=15
Tam giác ABC có: góc A = 90 *
=> góc BAD + góc DAC=90*
Tam giác AHD có : góc AHD = 90*
=> góc HDA + góc HAD = 90*
mà góc DAC = góc HAD ( do AD là pg góc HAC)
=> Góc BAD = góc HDA
=> Tam giác ABD cân tại B => AB = BD
Mặt khác : c/m đc Tam giác ABH đồng dạng với tam giác CBA
=> AB ^ 2 = BH x BC
= ( BD -12) BC = (AB - 12).50
= 50AB - 600
<=> AB^2 - 50AB + 600 = 0
Cre:mạng
a/ Xét 2 tg vuông HAC và tg vuông ABC có
\(\widehat{ACH}=\widehat{BAH}\) (cùng phụ với \(\widehat{ABC}\) ) => tg HAC đồng dạng với tg ABC (g.g.g)
b/
Xét tg vuông ABH
\(AH^2=AB^2-BH^2\) (Pitago) (1)
Xét tg vuông ACH có
\(AH^2=AC^2-CH^2\) (Pitago) (2)
Cộng 2 vế của (1) và (2) có \(2.AH^2=\left(AB^2+AC^2\right)-\left(BH^2+CH^2\right)\) (3)
Ta có
\(BH^2+CH^2=\left(BH+CH\right)^2-2.BH.CH=BC^2-2.BH.CH\)
Xét tg vuông ABC có \(AB^2+AC^2=BC^2\)
Thay vào (3)
\(2.AH^2=BC^2-BC^2+2.BH.CH\Rightarrow AH^2=BH.CH\)
c/
Xét tg ABH có
\(\dfrac{IH}{IA}=\dfrac{BH}{BA}\) (1) (trong tg đường phân giác của 1 góc chia cạnh đối diện thành hai đoạn thẳng tỷ lệ với hai cạnh kề 2 đoạn ấy)
Xét tg ACH có
\(\dfrac{KH}{KC}=\dfrac{AH}{AC}\)(2) (trong tg đường phân giác của 1 góc chia cạnh đối diện thành hai đoạn thẳng tỷ lệ với hai cạnh kề 2 đoạn ấy)
Xét tg vuông ABH và tg vuông ABC có
\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với \(\widehat{ABC}\) ) => tg ABH đồng dạng với tg ABC (g.g.g)
\(\Rightarrow\dfrac{BH}{BA}=\dfrac{AH}{AC}\) (3)
Từ (1) (2) và (3) \(\Rightarrow\dfrac{KH}{KC}=\dfrac{IH}{IA}\) => IK//AC (Talet đảo trong tam giác) (đpcm)
c/m
=> KD=DH=6 cm
đặt CD =x (x>0)
áp dụng đlý ta lét
\Rightarrow
lại có
\Rightarrow
\Rightarrow
\Rightarrow
Nếu x=15 => AB=10<2DK=12=>loai
nẽu=10=>AB=15 thoa man
Vậy AB=15
ta có tam giác AHB ~ tam giác CAB. => AH/AC = HB/AB. Lại có AH/AC = DH/DC
=> DH/DC = HB/AB <=> DH/(DH + DC) = HB/(HB + AB). <=> DH/(BC - HB) = HB/(HB + AB). (1)
Dễ dàng thấy DH=DK=6. Thay vào (1) ta có 6/(25 - HB) = HB/(HB + AB) (2)
Lại có tam giác AHC ~ tam giác BAC => AH/AC = BA/BC. <=> DH/DC = BA/BC <=> DH/HC = AB/(BC + AB). => 6/(25 - HB) = AB/(25 + AB). (3).
Bạn giải ptr (2) và (3) để tìm ra AB. K khó lắm đâu. Cố gắng nốt nha!