Trong không gian với hệ tọa độ Oxyz, cho hình chóp có đỉnh S(2;3;5) và đáy là một đa giác nằm trong mặt phẳng P : 2 x + y − 2 z − 3 = 0 , có diện tích bằng 12. Tính thể tích của khối chóp đó.
A. 4
B. 24
C. 8
D. 72
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Chiều cao của khối chóp có độ dài bằng d S , P = 2 .
Suy ra thể tích khối chóp đã cho là V = 1 3 . 12 . 2 = 8 .
Chọn đáp án A
Lấy điểm C trong mặt phẳng (ABD) sao cho ABCD là hình chữ nhật
Do vậy, tâm mặt cầu ngoại tiếp hình chóp là trung điểm
Cách 2: Gọi I(a;b;c) là tâm mặt cầu ngoại tiếp hình chóp là trung điểm S.ABCD. Ta có:
STUDY TIP |
Khi xác định tâm mặt cầu ngoại tiếp hình chop hoặc lăng trụ ta có thể làm theo hai hường: + Hướng 1: Dùng điều kiện tâm cách đều các đỉnh đi đến giải hệ phương trình + Hướng 2: Dựa vào tính đặc biệt của hình như: Hình chop đều, hình chop có các đỉnh cùng nhìn một cạnh dưới một góc vuông |