K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

Hỏi đáp Toán

18 tháng 4 2016

\(\overrightarrow{n}=\left[\overrightarrow{AB};\overrightarrow{n_{\alpha}}\right]=\left(1;-2;1\right)\) là một vectơ pháp tuyến của \(\left(\beta\right)\)

Mặt phẳng \(\beta\) đi qua A có vectơ pháp tuyến \(\overrightarrow{n}=\left(1;-2;1\right)\) có phương trình \(x-2y+z-2=0\)

Cho x, y là các số thỏa mãn \(x^2+y^2+xy=3\Leftrightarrow\left(x+y\right)^2-3=xy\)

Vì \(xy\le\frac{\left(x+y\right)^2}{4}\Leftrightarrow\left(x+y\right)^2-3\le\frac{\left(x+y\right)^2}{4}\)

                       \(\Leftrightarrow\left(x-y\right)^2\le4\)

 

14 tháng 4 2016

\(\overrightarrow{AB}=\left(-1;-2;1\right)\)\(\overrightarrow{n_{\alpha}}=\left(2;-1;2\right)\)\(\Rightarrow\overrightarrow{n_p}=\left[\overrightarrow{AB};\overrightarrow{n_{\alpha}}\right]=\left(-3;4;5\right)\)

Phương trình mặt phẳng (P) : \(-3x+4y+5z=0\)

\(R=d\left(A;\left(\alpha\right)\right)=\frac{\left|6-1+2+1\right|}{\sqrt{9}}=\frac{8}{3}\)

Phương trình mặt cầu (S) : \(\left(x-3\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=\frac{64}{9}\)

22 tháng 5 2017

Ôn tập chương III

22 tháng 5 2017

Ôn tập chương III

9 tháng 5 2017

Vectơ →nn→(2 ; -1 ; 3) là vectơ pháp tuyến của mặt phẳng ( β) .

Vì (α) // ( β) nên →nn→ cũng là vectơ pháp tuyến của mặt phẳng (α) .

Phương trình mặt phẳng (α) có dạng:

2(x - 2) - (y + 1) + 3(z - 2) = 0

hay 2x - y + 3z -11 = 0.


1 tháng 4 2017

Giải:

a) Mặt phẳng (Oxy) qua điểm O(0 ; 0 ; 0) và có vectơ pháp tuyến (0 ; 0 ; 1) và là vectơ chỉ phương của trục Oz. Phương trình mặt phẳng (Oxy) có dạng:

0.(x - 0) +0.(y - 0) +1.(z - 0) = 0 hay z = 0.

Tương tự phương trình mặt phẳng (Oyz) là : x = 0 và phương trình mặt phẳng (Ozx) là: y = 0.

b) Mặt phẳng (P) qua điểm M(2; 6; -3) song song với mặt phẳng Oxy nhận (0 ; 0 ; 1) làm vectơ pháp tuyến. Phương trình mặt phẳng (P) có dạng: z +3 = 0.

Tương tự mặt phẳng (Q) qua M và song song với mặt phẳng Oyz có phương trình x - 2 = 0.

Mặt phẳng qua M song song với mặt phẳng Oxz có phương trình y - 6 = 0.

1 tháng 4 2017

Giải:

a) Mặt phẳng (ACD) đi qua A(5 ; 1 ; 3) và chứa giá của các vectơ (0 ; -1 ; 1)

(-1 ; -1 ; 3).

Vectơ = (-2 ; -1 ; -1) vuông góc với mặt phẳng (ACD).

Phương trình (ACD) có dạng:

2(x - 5) + (y - 1) + (z - 3) = 0.

hay 2x + y + z - 14 = 0.

Tương tự: Mặt phẳng (BCD) qua điểm B(1 ; 6 ; 2) và nhận vectơ làm vectơ pháp tuyến.

Ta có :(4 ; -6 ; 2), (3 ; -6 ; 4) và

= (-12 ; -10 ; -6)

Xét (6 ; 5 ; 3) thì nên cũng là vectơ pháp tuyến của mặt phẳng (BCD). Phương trình mặt phẳng (BCD) có dạng:

6(x - 1) + 5(y - 6) +3(z - 2) = 0

hay 6x + 5y + 3z - 42 = 0.

b) Mặt phẳng ( α ) qua cạnh AB và song song với CD thì ( α ) qua A và nhận

(-4 ; 5 ; 1) , (-1 ; 0 ; 2) làm vectơ chỉ phương.

Vectơ = (10 ; 9 ; 5) là vectơ pháp tuyến của ( α ).

Phương trình mặt phẳng ( α ) có dạng : 10x + 9y + 5z - 74 = 0.

22 tháng 5 2017

Ôn tập chương III

Ôn tập chương III

Ôn tập chương III

22 tháng 5 2017

Ôn tập chương III