K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Ta có: y′=x2−2(m+1)x+m2+2m

Để hàm số y=x33−(m+1)x2+(m2+2m)x+1 nghịch biến trên (2;3) thì y′<0 với mọi x∈(2;3).

Tức là khoảng (2;3) nằm trong khoảng hai nghiệm phương trình y′=0 (Do y′=x2−2(m+1)x+m2+2m có hệ số của x2 dương).

{Δ′>0x1≤2<3≤x2⇔{(m+1)2−m2−2m>0(x1−2)(x2−2)≤0(x1−3)(x2−3)≤0⇔{1>0x1x2−2(x1+x2)+4≤0x1x2−3(x1+x2)+9≤0

27 tháng 9 2019

Ta có: y′=x2−2(m+1)x+m2+2my′=x2−2(m+1)x+m2+2m

Để hàm số y=x33−(m+1)x2+(m2+2m)x+1y=x33−(m+1)x2+(m2+2m)x+1 nghịch biến trên (2;3)(2;3) thì y′<0y′<0 với mọi x∈(2;3).x∈(2;3).

Tức là khoảng (2;3)(2;3) nằm trong khoảng hai nghiệm phương trình y′=0y′=0 (Do y′=x2−2(m+1)x+m2+2my′=x2−2(m+1)x+m2+2m có hệ số của x2x2 dương).

{Δ′>0x1≤2<3≤x2⇔⎧⎪ ⎪⎨⎪ ⎪⎩(m+1)2−m2−2m>0(x1−2)(x2−2)≤0(x1−3)(x2−3)≤0⇔⎧⎪⎨⎪⎩1>0x1x2−2(x1+x2)+4≤0x1x2−3(x1+x2)+9≤0{Δ′>0x1≤2<3≤x2⇔{(m+1)2−m2−2m>0(x1−2)(x2−2)≤0(x1−3)(x2−3)≤0⇔{1>0x1x2−2(x1+x2)+4≤0x1x2−3(x1+x2)+9≤0

⇔{m2+2m−2.2.(m+1)+4≤0m2+2m−3.2.(m+1)+9≤0⇔{m2−2m≤0m2−4m+3≤0⇔{0≤m≤21≤m≤3⇔1≤m≤2

NV
31 tháng 8 2021

\(y'=mx^2-2\left(m+1\right)x+m-2\)

- Với \(m=0\) ko thỏa mãn

- Với \(m\ne0\) bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m+1\right)^2-m\left(m-2\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\4m+1\le0\end{matrix}\right.\) \(\Rightarrow m\le-\dfrac{1}{4}\)

1 tháng 9 2021

tại sao m=0 ko thoả mãn vậy ạ?

21 tháng 6 2021

undefined

16 tháng 8 2019

12 tháng 8 2018

Đáp án B

Để ý thấy lời giải bài toán sai ở bước 3 do m có thể nhỏ hơn 0

y'=1/3*3x^2(m-1)-(m-1)2x+1

=x^2(m-1)-x(2m-2)+1

Để hàm số đồng biến trên R thì y'>0 với mọi x

=>m-1<>0 và (2m-2)^2-4(m-1)>0

=>m<>1 và 4m^2-8m+4-4m+4>0

=>4m^2-12m+8>0 và m<>1

=>m^2-3m+2>0 và m<>1

=>m>2 hoặc m<1

20 tháng 11 2019

Đáp án đúng : A