K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2022

refer

10 tháng 5 2022

Hai đồ thị \(y=\left(3m+2\right)x+5\) và \(y=-x-1\) cắt nhau

\(\Rightarrow3m+2\ne-1\Rightarrow m\ne-1\)

Khi đó ta có giao điểm 2 đồ thị là \(A=\left(x;y\right)=\left(x;-x-1\right)\)

\(P=y^2+2x-2019=\left(-x-1\right)^2+2x-2019=x^2+4x-2018\\ =\left(x+2\right)^2-2022\ge-2022\)

Dấu = xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\Leftrightarrow y=1\)

\(\Rightarrow1=\left(3m+2\right)\left(-2\right)+5\Rightarrow-6m=0\Rightarrow m=0\left(TM\right)\)

25 tháng 12 2021

Vì hai đồ thị cắt nhau tại một điểm trên trục tung nên n=-4

=>m=-2

NV
17 tháng 7 2021

Với \(m=-2\) ko thỏa mãn

Với \(m\ne-2\) hàm \(f\left(x\right)\) là bậc nhất trên bậc nhất nên luôn đơn điệu trên khoảng đã cho

\(\Rightarrow\) min max rơi vào 2 đầu mút

\(f\left(2\right)=m+4\) ; \(f\left(3\right)=\dfrac{m+6}{2}\)

\(\Rightarrow\left|m+4-\dfrac{m+6}{2}\right|=2\Leftrightarrow\)

\(\Leftrightarrow m+2=\pm4\Rightarrow\left[{}\begin{matrix}m=2\\m=-6\end{matrix}\right.\)

17 tháng 7 2021

Tại sao m = -2 lại không thỏa mãn ạ?