1. Cho 25 số tự nhiên a1;a2;a3;a4;...a25 thỏa mãn điều kiện:
1/căn a1 +1/căn a2+....+1/căn a25 = 9
chứng minh trong 25 số tồn tại 2 số bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1 : Trong cac so tren co 1 so ai chia hết cho 10 ( i = 1;2;3;...;9)
SUY RA trong 10 số bất kì có 1 số chia hết cho 10 ( 1)
TH2 : Trong các số trên ko có số nào chia hết cho 10 .Khi đó các số dư khi chia cho 10 là 1;2;3;...;9 ( 9 chữ số ),với 10 số chia cho 10 nên ít nhất sẽ có 2 số chia cho 10 có cùng số dư ( theo nguyen li dirich le)
Suy ra hiệu của 2 số đó sẽ chia hết cho 10 (2)
Từ 1 và 2 suy ra thế nào cũng sẽ có 1 số bất kì hoac hiệu một số các số liên tiếp nhau trong dãy trên chia hết cho 10(DPCM)
uses crt;
const fi='dulieu.inp';
var f1:text;
a:array[1..100]of integer;
n,i,t1,t2:integer;
begin
clrscr;
assign(f1,fi); reset(f1);
readln(f1,n);
for i:=1 to n do
read(f1,a[i]);
t1:=0;
t2:=0;
for i:=1 to n do
begin
if a[i]>0 then t1:=t1+a[i];
if a[i]<0 then t2:=t2+a[i];
end;
writeln('Tong cac so duong la: ',t1);
writeln('Tong cac so am la: ',t2);
close(f1);
readln;
end.
Bg: Đặt S1 = a1; S2 = a1+ a2; S3 = a1+a2+a3 ... ;S10 = a1+a2+...+a10. Xét 10 số S1,S2, ... S10 ta có 2 trường hợp như sau :
+) Nếu có 1 số Gk nào đó tận cg = 0 ( Sk = a1+a2 + ... ak, k từ 1 - 10) => tổng của k số a1,a2, ... ak chia hết cho 10 ( đpcm )
+) Nếu k có số nào trong 10 số S1, S2, ... S10 tận cg là 0 => chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cg giống nhau. Ta gọi 2 số đó là : Sm và Mn (1= <m<n=< 10 ) .... Sm = a1+a2 + ... a(m); Mn = a1+a2+ ...a(m)+ a(m1)+ a(m2) + ... + a(n ) .
=> Sn - Sm = a(m+1)+ a(m+2) + ....+ a(n) tận cg là 0 => Tổng của n-m số a( m+1),a(m+2), ..., a(n) chia hết cho 10 ( đpcm ) .
Giả sử a1;a2;a3;a4;........;a50a1;a2;a3;a4;........;a50 là 50 số tự nhân khác nhau và 0<a1<a2<a3<........<a500<a1<a2<a3<........<a50
⇒1a1+1a2+1a3+1a4+.....+1a50≤11+12+13+.....+150⇒1a1+1a2+1a3+1a4+.....+1a50≤11+12+13+.....+150
<1+12+12+....+12=1+492=512<1+12+12+....+12=1+492=512 (mâu thuẫn giả thiết)
⇒⇒Trong 50 số trên có ít nhất 2 số bằng nhau
Giả sử 100 số đó đôi một khác nhau
Không mất tính tổng quát giả sử 0<a1<a2<a3<...<a1000<a1<a2<a3<...<a100
Vậy a1≥1;a2≥2;....;a100≥100a1≥1;a2≥2;....;a100≥100suy ra 1/a1+1/a2+...+1/a100≤1+12+13+...+11001a1+1a2+...+1a100≤1+1/2+1/3+...+1/100
⇒1/a1+1/a2+...+1/a100<1+1/2+1/2+...+1/2(99 phân số 1/2)
⇒1/a1+1/a2+...+1/a100<1/2.(2+99)=1/2.101=101/2trái với giả thiết.
Vì vậy điều giả sử sai, ta có điều phải chứng minh