K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2021

Mình không biết nha tạm thời bạn hỏi bạn khác đi 😅

3 tháng 7 2017

\(\frac{x}{2}+\frac{3}{y}=\frac{5}{4}\Leftrightarrow\frac{3}{y}=\frac{5}{4}-\frac{x}{2}\Leftrightarrow\frac{3}{y}=\frac{5-2x}{4}\Leftrightarrow y\left(5-2x\right)=12\)

x là số nguyên dương nên x>0 => 2x>0 => 5-2x>0 => 5>2x => x<5/2 mà x nguyên dương chẵn => x=2

=>y=12

28 tháng 7 2015

x = 2 ; y = 12            

28 tháng 7 2015

\(\frac{x}{2}+\frac{3}{y}=\frac{5}{4}\)

\(\frac{2x}{4}+\frac{3}{y}=\frac{5}{4}\)

\(\frac{3}{y}=\frac{5}{4}-\frac{2x}{4}\)

\(\frac{3}{y}=\frac{5-2x}{4}\)

y(5-2x)=3*4

y(5-2x)=12

=>y thuộc Ư(12)và 5-2x thuộc Ư lẻ của 12

Ư(12)={-12;-6;-4;-3;-2;-1;1;2;3;4;6;12}

Ư lẻ của 12={-3;-1;1;3}Ta có bảng sau:

5-2x-3-113
x4321
y-4-12124

 Vậy (x,y)={ (4,-4);(3;-12);(2,12);(1,4)}

 

 

6 tháng 7 2017

Đây nhé: Câu hỏi của Trần Thị Thùy Trang - Toán lớp 7 - Học toán với OnlineMath

6 tháng 7 2017

cặp số nguyên dương là 2 nhá 

bởi vì 2+5=5 và 2+4=4 ,

9 tháng 10 2018

Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1). 
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]

9 tháng 10 2018

 Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có: 
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1) 
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có: 
(xy-1) I (x^2+1) 
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y) 
Điều đó có nghĩa là tồn tại z ∈ N* sao cho: 
x+y = z(xy-1) <=> x+y+z =xyz (2) 

[Đây lại có vẻ là 1 bài toán khác] 
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z. 
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1 
=> 3 ≥ y => y ∈ {1;2;3} 
Nếu y=1: x+2 =x (loại) 
Nếu y=2: (2) trở thành x+3 =2x => x=3 
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y) 
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1) 
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé] 

Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]