K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔNME có 

ND là đường cao

ND là đường phân giác

Do đó: ΔNME cân tại N

b: Xét ΔNMD và ΔNED có

NM=NE

\(\widehat{MND}=\widehat{END}\)

ND chung

DO đó: ΔNMD=ΔNED

Suy ra: DM=DE

mà NM=NE

nên ND là đường trung trực của ME

19 tháng 3 2022

A

19 tháng 12 2021

MP=4cm

\(\widehat{N}=53^0;\widehat{P}=37^0\)

a: ΔMNI vuông tại M

=>MN<NI và góc MIN<90 độ

=>góc NIP>90 độ

=>NI<NP

=>MN<NI<NP

b: Xét ΔIPK và ΔIMN có

IP=IM

góc PIK=góc MIN

IK=IN

=>ΔIPK=ΔIMN

c: ΔIPK=ΔIMN

=>PK=MN và goc MNI=góc PKI

d: góc MPN=90-35=55 độ

23 tháng 3 2016

Ta có: <A+<B+<C=180

90+30+<C=180

<c=180-30-90=60

Xét ▲ABC và ▲MNP ta có:

<A=<M=90

<C=<P(=60)

Do đó ▲ABC đồng dạng ▲MNP(g-g)

25 tháng 3 2022

Tam giác MNP vuông cân tại N

25 tháng 3 2022

Tam giác MNP vuông cân tại N

5 tháng 10 2019

6 cm2

a) Xét ΔNAM vuông tại M và ΔNDA vuông tại D có 

NA chung

NA=ND(gt)

Do đó: ΔNAM=ΔNDA(cạnh huyền-cạnh góc vuông)

\(\widehat{MNA}=\widehat{DNA}\)(hai góc tương ứng)

mà tia NA nằm giữa hai tia NM,NDnên NA là tia phân giác của \(\widehat{NMD}\)hay NA là tia phan giác của \(\widehat{NMP}\)(đpcm)b) Xét ΔNMD có NM=ND(gt)nên ΔNMD cân tại N(Định nghĩa tam giác cân)Xét ΔNMD cân tại N có \(\widehat{MND}=60^0\)(gt)nên ΔNMD đều(Dấu hiệu nhận biết tam giác đều)c) Ta có: ΔNMP vuông tại M(gt)nên \(\widehat{NMP}+\widehat{MPN}=90^0\)(hai góc nhọn phụ nhau)\(\Leftrightarrow\widehat{MPN}=90^0-\widehat{NMP}=90^0-60^0=30^0\)(1)Ta có: NA là tia phân giác của \(\widehat{MNP}\)(cmt)nên \(\widehat{PNA}=\dfrac{\widehat{MNP}}{2}=\dfrac{60^0}{2}=30^0\)(2)Từ (1) và (2) suy ra \(\widehat{APN}=\widehat{ANP}\)Xét ΔANP có \(\widehat{APN}=\widehat{ANP}\)(cmt)nên ΔANP cân tại A(Định lí đảo của tam giác cân)Ta có: ΔANP cân tại A(gt)mà AD là đường cao ứng với cạnh đáy NP(gt)nên AD là đường trung tuyến ứng với cạnh NP(Định lí tam giác cân)hay D là trung điểm của NP(đpcm)