Cho tam giác MNP vuông tại M; kẻ đường phân giác ND (D thuộc MP) đường thẳng đi qua M và vuông góc với ND cắt NP tại E.
a,chứng minh NM = NE
b,chứng minh ND là đường trung trực của NE
c, so sánh DP và DE
giúp mk vs, mk cần gấp ạ:<
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔMNI vuông tại M
=>MN<NI và góc MIN<90 độ
=>góc NIP>90 độ
=>NI<NP
=>MN<NI<NP
b: Xét ΔIPK và ΔIMN có
IP=IM
góc PIK=góc MIN
IK=IN
=>ΔIPK=ΔIMN
c: ΔIPK=ΔIMN
=>PK=MN và goc MNI=góc PKI
d: góc MPN=90-35=55 độ
Ta có: <A+<B+<C=180
90+30+<C=180
<c=180-30-90=60
Xét ▲ABC và ▲MNP ta có:
<A=<M=90
<C=<P(=60)
Do đó ▲ABC đồng dạng ▲MNP(g-g)
a) Xét ΔNAM vuông tại M và ΔNDA vuông tại D có
NA chung
NA=ND(gt)
Do đó: ΔNAM=ΔNDA(cạnh huyền-cạnh góc vuông)
⇒\(\widehat{MNA}=\widehat{DNA}\)(hai góc tương ứng)
mà tia NA nằm giữa hai tia NM,NDnên NA là tia phân giác của \(\widehat{NMD}\)hay NA là tia phan giác của \(\widehat{NMP}\)(đpcm)b) Xét ΔNMD có NM=ND(gt)nên ΔNMD cân tại N(Định nghĩa tam giác cân)Xét ΔNMD cân tại N có \(\widehat{MND}=60^0\)(gt)nên ΔNMD đều(Dấu hiệu nhận biết tam giác đều)c) Ta có: ΔNMP vuông tại M(gt)nên \(\widehat{NMP}+\widehat{MPN}=90^0\)(hai góc nhọn phụ nhau)\(\Leftrightarrow\widehat{MPN}=90^0-\widehat{NMP}=90^0-60^0=30^0\)(1)Ta có: NA là tia phân giác của \(\widehat{MNP}\)(cmt)nên \(\widehat{PNA}=\dfrac{\widehat{MNP}}{2}=\dfrac{60^0}{2}=30^0\)(2)Từ (1) và (2) suy ra \(\widehat{APN}=\widehat{ANP}\)Xét ΔANP có \(\widehat{APN}=\widehat{ANP}\)(cmt)nên ΔANP cân tại A(Định lí đảo của tam giác cân)Ta có: ΔANP cân tại A(gt)mà AD là đường cao ứng với cạnh đáy NP(gt)nên AD là đường trung tuyến ứng với cạnh NP(Định lí tam giác cân)hay D là trung điểm của NP(đpcm)
a: Xét ΔNME có
ND là đường cao
ND là đường phân giác
Do đó: ΔNME cân tại N
b: Xét ΔNMD và ΔNED có
NM=NE
\(\widehat{MND}=\widehat{END}\)
ND chung
DO đó: ΔNMD=ΔNED
Suy ra: DM=DE
mà NM=NE
nên ND là đường trung trực của ME