Tìm các số tự nhiên a; b thoả mãn điều kiện : 11/ 17 < a b < 23/ 29 và 8b-9a=31
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
CM
28 tháng 1 2019
a) Các số cần tìm là: 64 = 8 2 ; 81 = 9 2
b) Số cần tìm là: 64 = 4 3
CM
7 tháng 3 2019
a) Các số cần tìm là: 64 = 8 2 ; 81 = 9 2
b) Số cần tìm là: 64 = 4 3
5 tháng 4 2018
a tích các chữ số có 1 chữsố bằng 120 là
120 = 3x5x8
vậy số tự nhiên bé nhất có tích là 120 là 385
nhớ kic cho mik nhé
nhưng bài này sai thôi tớ ko biết đâu
Giải:
Ta biết: \(\dfrac{11}{17}< \dfrac{a}{b}< \dfrac{23}{29}\) và \(8b-9a=31\) \(\left(a;b\in N\right)\)
Theo đề bài: \(8b-9a=31\)
\(\Rightarrow b=\dfrac{31+9a}{8}=\dfrac{32-1+8a+a}{8}=\left[\left(4+a\right)+\dfrac{a-1}{8}\right]\in N\)
\(\Leftrightarrow\dfrac{a-1}{8}\in N\)
\(\Leftrightarrow\left(a-1\right)⋮8\)
\(\Leftrightarrow a=8k+1\left(k\in N\right)\)
Khi đó:
\(b=\dfrac{31+9.\left(8k+1\right)}{8}=9k+5\)
\(\Rightarrow\dfrac{11}{17}< \dfrac{8k+1}{9k+5}< \dfrac{23}{29}\)
\(\Leftrightarrow\left\{{}\begin{matrix}11.\left(9k+5\right)< 17.\left(8k+1\right)\Leftrightarrow k>1\\29.\left(8k+1\right)< 23.\left(9k+5\right)\Leftrightarrow k< 4\end{matrix}\right.\)
\(\Rightarrow1< k< 4\)
\(\Rightarrow k\in\left\{2;3\right\}\)
Với \(\left[{}\begin{matrix}k=2\Rightarrow\left\{{}\begin{matrix}a=17\\b=23\end{matrix}\right.\\k=3\Rightarrow\left\{{}\begin{matrix}a=25\\b=32\end{matrix}\right.\end{matrix}\right.\)
Vậy \(\left(a;b\right)=\left(17;23\right);\left(25;32\right)\)
Giải:
Ta biết: 1117<��<23291711<ba<2923 và 8�−9�=318b−9a=31 (�;�∈�)(a;b∈N)
Theo đề bài: 8�−9�=318b−9a=31
⇒�=31+9�8=32−1+8�+�8=[(4+�)+�−18]∈�⇒b=831+9a=832−1+8a+a=[(4+a)+8a−1]∈N
⇔�−18∈�⇔8a−1∈N
⇔(�−1)⋮8⇔(a−1)⋮8
⇔�=8�+1(�∈�)⇔a=8k+1(k∈N)
Khi đó:
�=31+9.(8�+1)8=9�+5b=831+9.(8k+1)=9k+5
⇒1117<8�+19�+5<2329⇒1711<9k+58k+1<2923
⇔{11.(9�+5)<17.(8�+1)⇔�>129.(8�+1)<23.(9�+5)⇔�<4⇔{11.(9k+5)<17.(8k+1)⇔k>129.(8k+1)<23.(9k+5)⇔k<4
⇒1<�<4⇒1<k<4
⇒�∈{2;3}⇒k∈{2;3}
Với [�=2⇒{�=17�=23�=3⇒{�=25�=32⎣⎡k=2⇒{a=17b=23k=3⇒{a=25b=32
Vậy (�;�)=(17;23);(25;32)(a;b)=(17;23);(25;32)