Câu 4 : Cho hình tam giác ABC có góc A là góc vuông có AB = 15cm ; AC có độ dài bằng 6/5 độ dài cạnh AB ; P là một điểm AB sao cho AP . Trên cạnh AC lấy điểm Q sao cho CQ = 1/3 CA.
A, Tính diện tích tam giác ABC. B, Tính diện tích tam giác CPB. C, Tính diện tích tam giác BAQ. D, Tính diện tích tứ giác BPQC.Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác vuông ABC có hai cạnh góc vuông AB=15cm, AC=2dm. Tính diện tích hình tam giác vuông ABC
2dm=20cm
Cạnh AB là chiều cao
Cạnh AC là cạnh đáy
Diện tích hình tam giác ABC là
\(\frac{15x20}{2}=150\left(cm2\right)\)
2dm = 20cm
Diện tích hình tam giác vuông ABC là : 15 x 20 : 2 = 150 (cm2)
Đáp số : 150cm2
a: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
góc B chung
=>ΔAHB đồng dạng với ΔCAB
b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)
HB=15^2/20=9cm
c: AD*AB=AH^2
AE*AC=AH^2
=>AD*AB=AE*AC
Ta có:
PB = AB – AP
= 15 – 10 = 5(cm)
Suy ra:
S.CPB = 1 2 CA x PB = 1 2 x 18 x 5 = 45( c m 2 )
Nhưng ta lại có:
S.CQB = S.CPB
Nên S.CQB = 45( c m 2 )
1 2 x AB x QC = 45
1 2 x 15 x QC = 45
QC = 6(cm)
Ta suy ra:
AQ = AC – AQ = 18 – 6 = 12(cm)
Do đó ta có
S.APQ = 1 2 AP x AQ = 1 2 x 10 x 12 = 60 ( c m 2 )
Vậy: S.APQ = 60 c m 2
Hình đơn giản nên tự vẽ nhá.
a) Áp dụng định lý Py-ta-go vào tam giác vuông ABC:
AC^2 + AB^2 = BC^2
=> AC^2 = BC^2 - AB^2 = 15^2 - 9^2 = 225 - 81 = 144
=> AC = căn 144 = 12 (cm)
b) Xét tam giác BIA và tam giác BIH:
BAI^ = BHI^ = 90o
IBA^ = IBH^
BI chung
=> tam giác BIA = tam giác BIH (cạnh huyền_góc nhọn)
=> BA = BH (2 cạnh tương ứng)
=> Tam giác AHB cân
a.Ta có: AB=9cm ; BC=15cm
Theo định lý Py-ta-go: BC2 = AB2 +AC2
=>AC2 =BC2 - AB2 =152 - 92 = 225-81= 144
AC2 = 144 =>AC=\(\sqrt{144}\)=12cm
b.Ta có: IH vuông góc BC tại H => tam giác BIH vuông tại H
Góc A vuông ( tam giác ABC vuông tại A ) => tsm giác ABI vuông tại A
Xét tg BIH và tg ABI có:
- góc ABI = góc HBI (BI là phân giác góc B)
- BI chung
=> BIH = ABI ( cạnh huyền - góc nhọn)
Do đó: AB = BH
mà đây là 2 cạnh bên của tam giác ABH => ABH cân tại H
1: AC=20cm
\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{15\cdot20}{2}=150\left(cm^2\right)\)
2: Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
Do đó: ADHE là hình chữ nhật
3: Xét tứ giác AFDH có
AF//DH
AF=DH
Do đó: AFDH là hình bình hành