K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2dm=20cm

Cạnh AB là chiều cao

Cạnh AC là cạnh đáy

Diện tích hình tam giác ABC là

\(\frac{15x20}{2}=150\left(cm2\right)\)

 

5 tháng 1 2016

2dm = 20cm

Diện tích hình tam giác vuông ABC là : 15 x 20 : 2 = 150 (cm2)

Đáp số : 150cm2

a: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có

góc B chung

=>ΔAHB đồng dạng với ΔCAB

b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

HB=15^2/20=9cm

c: AD*AB=AH^2

AE*AC=AH^2

=>AD*AB=AE*AC

16 tháng 5 2018

21 tháng 9 2019

19 tháng 4 2017

Ta có:

PB     = AB – AP

          = 15 – 10 = 5(cm)

Suy ra:

S.CPB = 1 2  CA x PB =   1 2 x 18 x 5 = 45( c m 2 )

Nhưng ta lại có:

          S.CQB =  S.CPB

Nên S.CQB =  45( c m 2 )

1 2  x AB x QC = 45

  1 2  x 15 x QC = 45

 QC = 6(cm)

Ta suy ra:

          AQ = AC – AQ = 18 – 6 = 12(cm)

Do đó ta có

S.APQ =   1 2 AP x AQ =  1 2 x 10 x 12 = 60 ( c m 2

Vậy: S.APQ = 60  c m 2

4 tháng 7 2016

Hình đơn giản nên tự vẽ nhá.

a) Áp dụng định lý Py-ta-go vào tam giác vuông ABC:

AC^2 + AB^2 = BC^2
=> AC^2 = BC^2 - AB^2 = 15^2 - 9^2 = 225 - 81 = 144 

=> AC = căn 144 = 12 (cm)

b) Xét tam giác BIA và tam giác BIH:

BAI^ = BHI^ = 90o

IBA^ = IBH^ 

BI chung

=> tam giác BIA = tam giác BIH (cạnh huyền_góc nhọn)

=> BA = BH (2 cạnh tương ứng)

=> Tam giác AHB cân

4 tháng 7 2016

a.Ta có: AB=9cm ; BC=15cm

Theo định lý Py-ta-go: BC2 = AB2 +AC2

=>AC=BC2 - AB2 =152 - 92  = 225-81= 144

AC2 = 144 =>AC=\(\sqrt{144}\)=12cm

b.Ta có: IH vuông góc BC tại H => tam giác BIH vuông tại H

             Góc A vuông ( tam giác ABC vuông tại A ) => tsm giác ABI vuông tại A

 Xét tg BIH và tg ABI có:

  • góc ABI = góc HBI (BI là phân giác góc B)
  •  BI chung

=> BIH = ABI ( cạnh huyền - góc nhọn)

Do đó: AB = BH

mà đây là 2 cạnh bên của tam giác ABH => ABH cân tại H

1: AC=20cm

\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{15\cdot20}{2}=150\left(cm^2\right)\)

2: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

Do đó: ADHE là hình chữ nhật

3: Xét tứ giác AFDH có

AF//DH

AF=DH

Do đó: AFDH là hình bình hành