Cho 2 đa thức M=6x2+3xy-2y2 ; N=3y2-2x2-3xy.
Chứng minh rằng không tồn tại giá trị nào của x để 2 đa thức có cùng giá trị âm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(=\left(x-5\right)^2-9y^2\)
\(=\left(x-5-3y\right)\left(x-5+3y\right)\)
Bài 1:
b: \(=\left(x-5\right)^2-9y^2\)
\(=\left(x-5-3y\right)\left(x-5+3y\right)\)
\(1,\\ a,=3x\left(x-3y\right)\\ b,=\left(x-5\right)^2-9y^2=\left(x-3y-5\right)\left(x+3y-5\right)\\ c,=3x\left(x-y\right)-2\left(x-y\right)=\left(3x-2\right)\left(x-y\right)\\ 2,\\ Sửa:x^2-6x+10=\left(x-3\right)^2+1\ge1>0,\forall x\)
1, =3x (2x -3y)
c, = 3x(x-y) -2(x-y)
= (3x-2)(x-y)
2, Ta có: x2 -6x+10= (x-3)2 +11
Nhận xét: (x-3)2 >= 0 với mọi số thực x
=> (x-3)2 +1 >= 1 >0 (đpcm)
Chọn A
Ta có P + N = M ⇒ P = M - N
= 5xy + 2x2- 2y2-5x2+ 3xy
= -3x2+ 8xy - 2y2
\(M+N=\left(2x^2+3xy+2y^2\right)+\left(-5x^2-3xy+2y^2+5\right)\\ =2x^2+3xy+2y^2-5x^2-3xy+2y^2+5\\ =-3x^2+4y^2+5\\ M-N=\left(2x^2+3xy+2y^2\right)-\left(-5x^2-3xy+2y^2+5\right)\\ =2x^2+3xy+2y^2+5x^2+3xy-2y^2-5\\ =7x^2+6xy-5\)
\(N-M=\left(-5x^2-3xy+2y^2+5\right)-\left(2x^2+3xy+2y^2\right)\\ =-5x^2-3xy+2y^2+5-2x^2-3xy-2y^2\\ =-7x^2-6xy+5\)
a) Ta có: \(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
\(\Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy\)
\(\Leftrightarrow M=x^2+11xy-y^2\)
Vậy: \(M=x^2+11xy-y^2\)
b) Ta có: \(\left(3xy-4y^2\right)-N=x^2-7xy+8y^2\)
\(\Leftrightarrow N=3xy-4y^2-x^2+7xy-8y^2\)
\(\Leftrightarrow N=-x^2+10xy-12y^2\)
Vậy: \(N=-x^2+10xy-12y^2\)
a, (6x2+9xy-y2) - ( 5x2-2xy)=M
=> M= (6x2+9xy-y2) - ( 5x2-2xy)
=> M= 6x2+9xy-y2 - 5x2+2xy
=> M=(6x2- 5x2)+(9xy+2xy)-y2
=>M= 1x2 + 11xy - y2
Vậy M= 1x2 + 11xy - y2
b, N= (3xy-4y2) - (x2-7xy+8y2)
=> N= 3xy-4y2 - x2+7xy-8y2
=> N= (3xy+7xy)-(4y2+8y2)-x2
=> N= 10xy - 12y2 -x2
Vậy N= 10xy - 12y2 -x2
a: Ta có: \(M+5x^2-2xy=6x^2+9xy-y^2\)
\(\Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy\)
\(\Leftrightarrow M=x^2+11xy-y^2\)
b: Ta có: \(\left(3xy-4y^2\right)-N=x^2-7xy+8y^2\)
\(\Leftrightarrow N=3xy-4y^2-x^2+7xy-8y^2\)
\(\Leftrightarrow N=-x^2+10xy-12y^2\)