3. Cho hình thang ABCD AB//CD. Hai đường chéo AC và BD vuông góc với nhau. Vẽ đường cao BH và vẽ hình bình hành ABEC. Biết BD=12; DH=7,2; Tính:
a) Độ dài đoạn thẳng DE
b) Tính diện tích hình thang ABCD
GIÚP MÌNH VỚI ######
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
AC vuông BD mà AC // BE
Suy ra: BE vuông DB
BH=\(\sqrt{BD^2-DH^2}=\sqrt{92,16}=9,6\)
Áp dụng hệ thức lượng trong tam giác vuông DBE ta được
\(BH^2=DH.HE\Leftrightarrow92,16=7,2.HE\Leftrightarrow HE=12.8\)
Vậy DE=HE+DH=20
Diện tích ABCD=1/2BH(AB+DC)=1/2BH(CE+DC)=96
Vậy là xong. Bạn có rảnh thì xem giải tiếp mình vài câu hỏi mik gửi lên giùm.
CẢM ƠN BẠN!
Dựng hình bình hành \(ABEC\).
Khi đó \(E\in DC\).
Vì \(BD\perp AC\)mà \(AC//BE\)nên \(BE\perp BD\).
Kẻ \(BH\perp DE\).
Xét tam giác \(BED\)vuông tại \(B\)đường cao \(BH\):
\(\frac{1}{BH^2}=\frac{1}{BD^2}+\frac{1}{BE^2}\Leftrightarrow\frac{1}{4^2}=\frac{1}{5^2}+\frac{1}{BE^2}\Leftrightarrow BE=\frac{20}{3}\left(cm\right)\)
\(S_{ABCD}=\frac{1}{2}.AC.BD=\frac{1}{2}.BD.BE=\frac{1}{2}.5.\frac{20}{3}=\frac{50}{3}\left(cm^2\right)\)