K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2021

undefinedundefined

13 tháng 7 2021

Cảm ơn bạn 🙂

31 tháng 12 2017

câu a, làm ở câu hỏi kia rồi 

câu b) ta có 

\(AE=AF\Rightarrow2AE=AE+AF=AE+AC+CF=AE+AC+BE=AB+AC\Rightarrow AE=\frac{AB+AC}{2}\left(ĐPCM\right)\)

câu c) 

cái này áp dụng góc ngoài = tổng các góc trong nhé !

ta có \(\widehat{ACB}=\widehat{CFM}+\widehat{CMF}=\widehat{AEF}+\widehat{EMB}=\widehat{ABC}+\widehat{EMB}+\widehat{EMB}\Rightarrow2\widehat{EMB}=\widehat{ACB}-\widehat{ABC}\Rightarrow\frac{\widehat{ACB}-\widehat{ABC}}{2}=\widehat{EMB}\left(ĐPCM\right)\)

4 tháng 4 2021

Một người vay 100 000 000 đồng (một trăm triệu đồng) với lãi suất 1,5% tháng. Hỏi sau 3 tháng người đó phải trả bao nhiêu tiền? (Biết lãi được nhập vốn để tính lãi tiếp tháng sau).giúp

4 tháng 4 2021

Bạn ui
Đồng ý kết bạn với mh nha

26 tháng 12 2015

Park Ji Yeon câu hỏi tương tự có đó

2 tháng 1 2018

Bạn tự vẽ hình nha 

a)_ Từ C kẻ đường thẳng song song với AB, cắt FE tại N => ^NCM = ^EBM (so le trong)

_Xét tg NCM và tg EBM ta có:

      ^NCM =^EBM(cmt)

      CM=BM(gt)

      ^NMC =^EMB(đối đỉnh)

=> tg NCM = tg EBM (g.c.g) 

=> CN = BE (2 cạnh tương ứng)

_CN // AB(cách vẽ) => ^CNF = ^AEF(đồng vị)(1)

  Bạn c/m tg AHF = tg AHE(g.c.g)

=> ^AFH = ^AEH hay ^CFN = ^AEF(2)

(1),(2) => ^CNF = ^CFN => tg CFN cân tại C

=> CF = CN. Mà CN = BE(cmt) => CF = BE

b) _Ta có: AB = AE + BE; AC = AF - CF

=> AB + AC = AE+BE+AF-CF(*)

Tg AHF = tg AHE(cmt) => AF = AE

Lại có BE=CF(câu a) thay vào(*) ta có:

      AB+AC = AE+BE+AE-BE =2.AE

=> AE=(AB+AC)/2

*Để mk nghĩ câu c đã

31 tháng 12 2017

A B C M I F E

Thông cảm hiình hơi xấu 

Kẻ CI //AB ( I thuộc EF)

xét \(\Delta BEMva\Delta CIM\) có 

\(\hept{\begin{cases}MC=BM\\\widehat{MBE}=\widehat{MCI}\left(sole\right)\\\widehat{IMC}=\widehat{EMD}\left(doi-dinh\right)\end{cases}\Rightarrow\Delta BEM=\Delta CIM\left(g-c-g\right)}\)

=>BE=CI  (1)           

và \(\widehat{AEM}=\widehat{CIF}\) (đồng vị )

mặt khác, Xét tam giác AEF có phân giác đồng thời là đường cao => tam giác AEF cân tại A => góc AEF = góc AFE 

=> góc AFE= góc CIF => tam giác CIF cân tại C => CI=CF(2) 

Từ (1) và (2) => BE=CF(ĐpcM)