K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2022

a, Xét tam giác ABH và tam giác ACH ta có 

AB = AC (gt) 

AH _ chung

^AHB = ^AHC = 900

Vậy tam giác ABH = tam giác ACH ( ch - cgv ) 

b, Xét tam giác ABC cân tại A

AH là đường cao đồng thời là đường trung tuyến 

=> H là trung điểm BC 

c, Do H là trung điểm BC => HB = 6/2 = 3 cm 

Theo định lí Pytago tam giác AHB vuông tại H

\(AH=\sqrt{AB^2-BH^2}=\sqrt{25-9}=4cm\) 

a: Xét ΔANC và ΔAMB có

góc ACN=góc ABM

góc NAC chung

=>ΔANC đồng dạng với ΔAMB

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là phân giác của góc BAC

=>HB=HC

b: HB=HC=3cm

=>AH=4cm

AH là phân giác của góc BAC

=>góc BAH=góc CAH

c: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

góc MAH=góc NAH

=>ΔAMH=ΔANH

=>HM=HN

=>ΔHMN cân tại H

b) Xét ΔBAH vuông tại H và ΔCAH vuông tại H có 

BA=CA(ΔBAC cân tại A)

AH chung

Do đó: ΔBAH=ΔCAH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

Xét ΔDHB vuông tại D và ΔEHC vuông tại E có 

HB=HC(cmt)

\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)

Do đó: ΔDHB=ΔEHC(Cạnh huyền-góc nhọn)

Suy ra: HD=HE(Hai cạnh tương ứng)

Xét ΔHDE có HD=HE(cmt)

nên ΔHDE cân tại H(Định nghĩa tam giác cân)

câu a đâu rồi bạn ơi ???

Bài 2: 

a: H là trung điểm của BC

nên HB=HC=2,5(cm)

\(\Leftrightarrow AH=\dfrac{5\sqrt{15}}{2}\left(cm\right)\)

\(S=\dfrac{\dfrac{5\sqrt{15}}{2}\cdot5}{2}=\dfrac{25\sqrt{15}}{4}\left(cm^2\right)\)

b: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//BC

Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{B}=\widehat{C}\)

nên BMNC là hình thang cân

a) Xét ΔABC có 

BM là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)

hay \(\dfrac{AM}{CM}=\dfrac{AB}{BC}\)(1)

Xét ΔABC có 

CN là đường phân giác ứng với cạnh AB(gt)

nên \(\dfrac{AN}{AC}=\dfrac{BN}{BC}\)

hay \(\dfrac{AN}{BN}=\dfrac{AC}{BC}\)(2)

Ta có: ΔABC cân tại A(gt)

nên AB=AC(3)

Từ (1), (2) và (3) suy ra \(\dfrac{AN}{BN}=\dfrac{AM}{MC}\)

hay MN//BC(Đpcm)

b) Ta có: \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)(cmt)

nên \(\dfrac{AM}{5}=\dfrac{CM}{6}\)

mà AM+CM=AC(M nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AM}{5}=\dfrac{CM}{6}=\dfrac{AM+CM}{5+6}=\dfrac{AC}{11}=\dfrac{5}{11}\)
Do đó:

\(\left\{{}\begin{matrix}\dfrac{AM}{5}=\dfrac{5}{11}\\\dfrac{CM}{6}=\dfrac{5}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AM=\dfrac{25}{11}\left(cm\right)\\CM=\dfrac{30}{11}\left(cm\right)\end{matrix}\right.\)

Xét ΔABC có MN//BC(cmt)

nên \(\dfrac{MN}{BC}=\dfrac{AM}{AC}\)(Hệ quả Định lí Ta lét)

\(\Leftrightarrow\dfrac{MN}{6}=\dfrac{25}{11}:5=\dfrac{25}{11}\cdot\dfrac{1}{5}=\dfrac{5}{11}\)

hay \(MN=\dfrac{30}{11}\left(cm\right)\)

c) Nửa chu vi của ΔABC là:

\(P_{ABC}=\dfrac{AB+AC+BC}{2}=\dfrac{5+5+6}{2}=\dfrac{16}{2}=8\left(cm\right)\)

Diện tích tam giác ABC là:
\(S_{ABC}=\sqrt{8\cdot\left(8-5\right)\cdot\left(8-5\right)\cdot\left(8-6\right)}=\sqrt{8\cdot3\cdot3\cdot2}=\sqrt{16\cdot9}=4\cdot3=12\left(cm^2\right)\)

Ta có: ΔANM∼ΔABC(gt)

nên \(\dfrac{S_{ANM}}{S_{ABC}}=\left(\dfrac{AM}{AC}\right)^2=\left(\dfrac{5}{11}\right)^2=\dfrac{25}{121}\)

\(\Leftrightarrow S_{ANM}=\dfrac{25}{121}\cdot12=\dfrac{300}{121}\left(cm^2\right)\)