cho \({\rm{\Delta ABC = \Delta PQR}}\) biết AB = 8cm; BC = 10cm. Chu vi \({\rm{\Delta ABC}}\) là 25cm. Độ dài cạnh PR là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AB^2+BC^2=8^2+15^2=64+225=289\)
\(AC^2=17^2=289\)
\(\Rightarrow AB^2+BC^2=AC^2\Rightarrow\Delta ABC\) vuông tại B
a) Áp dụng HTL ta có:\(MH.HP=MH^2\Rightarrow x=\sqrt{2.8}=4\)
\(BC=MH+HP=10\)
Áp dụng HTL ta có: \(HP.NP=MP^2\Rightarrow y=\sqrt{8.10}=4\sqrt{5}\)
b) Áp dụng HTL ta có: \(EQ.QF=DQ^2\Rightarrow x=\dfrac{4^2}{1}=16\)
\(EF=EQ+QF=17\)
Áp dụng HTL ta có: \(QP.EF=y^2\Rightarrow y=\sqrt{17.1}=\sqrt{17}\)
gọi cạnh AF là x,BC là y
ta có AB=AE+EB=3+6=9cm;
theo định lý Ta Lét đảo ,ta có :
AE/EB=AF/FC hay 3/6 = x/5
<=>3.5=6.x<=>15=6.x<=> x=2,5
=> AC =AF+FC=2,5+5=7,5cm
mặc khác ta có:
AE/AB=EF/BC hay 3/6=8/y
<=>3.y=6.8<=>3.y=48<=>y=16
=>BC=16cm
a) △ABC là △ vuông. Vì 62+82=102(Định lí Pitago đảo).
b) 4,82.AH2=82⇒AH2=64-23,04=40,96=6.42(vì AH>0)⇒AH=6.4
a: Xét ΔABC vuông tại A có BC^2=AB^2+AC^2
nên ΔABC vuông tại A
b:\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot AB\cdot AC\)
=>AH*BC=AB*AC
=>AH*10=6*8=48
=>AH=4,8cm
PR=25-8-10=7(cm)