Cho biểu thức : A= x2 +1 ; B = 3-4x
a. TÌm x biết A+B=0
b. Tìm số nguyên x để 1 / A+B có giá trị là số nguyên
c. Tìm giá trị lớn nhất và nhỏ nhất của biểu thức b / A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: a>=b
=>5a>=5b
=>5a+10>=5b+10
b: a>=b
=>-8a<=-8b
=>-8a-9<=-8b-9<-8b+3
a ) Rút gọn biểu thức :
\(P=x\left(\dfrac{x+1}{x^2+x+1}+\dfrac{1}{1-x}+\dfrac{x^2+2}{x^3-1}\right)\)
\(=\dfrac{x^2-1-x^2-x-1+x^2+2}{x^3-1}\)
\(=\dfrac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x}{x^2+x+1}\) ( 1 )
b ) Tìm x để P = 7 .
Thay P = 7 vào biểu thức ( 1 ) ta có :
\(\dfrac{x}{x^2+x+1}=7\)
\(\Leftrightarrow x=7\left(x^2+x+1\right)\)
\(\Leftrightarrow\)\(7\left(x^2+1\right)=0\)
Vì \(x^2\ge0\) nên suy ra \(x^2+1\ge1\)
Vậy không có x thỏa mãn để P = 7 .