Cho tam giác ABC vuông tại A, đường cao AH
a) CM: tam giác ABC đồng dạng tam giác HBA, từ đó suy ra: AB.AH = BH.AC
b) Tia phân giác góc ABC cắt AC tại I (i). Biết AB=9cm; AC=12cm. Tính AI (ai), BC
c) Tính tỉ số diện tích tam giác HAB và tam giác HCA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tự kẻ hình
a, xét tam giác ABC và tam giác HBA có : góc B chung
góc BAC = góc BHA = 90
=> tam giác ABC đồng dạng với tam giác HBA (g-g)
=> AB/BH = AC/AH
=> AB.AH = BH.AC
b, xét tam giác BAH vuông tại H => HB^2 + HA^2 = AB^2 (Pytago)
BH = 3; AB = 5(gt)
=> 3^2 + AH^2 = 5^2
=> AH^2 = 16
=> AH = 4 do AH > 0
xét tam giác ABH có : BI là pg của góc ABH (gt)
=> AI/AB = IH/BH (tính chất)
=> AI+IH/AB+BH = AI/AB = IH/BH
=> AH/AB + BH = AI/AB = IH/BH
có: AH = 4; AB = 5; BH = 3
=> 4/3+5 = AI/5 = IH/3
=> AI/5 = IH/3 = 1/2
=> AI = 5/2 và IH = 3/2
c, góc CAH = 90 - góc HAB
góc HBA = 90 - góc HAB
=> góc CAH = góc HBA
xét tam giác AHC và tam giác BHA có: góc AHC = góc BHA = 90
=> tam giác AHC đồng dạng với tam giác BHA (g-g)
=> AC/AB = AH/HB
=> AC/AH = AB/HB
BI là pg của tam giác AHB => AI/AH = AB/AB
CK là pg của tam giác AHC => CK/KH = AC/AH
=> AI/AH = CK/KH
=> KI // AC
a, Xét △ABC và △HBA có:
∠AHB=∠BAC (=90o), ∠ABC chung
⇒△ABC∼△HBA (g.g)
⇒ \(\dfrac{AB}{BC}=\dfrac{BH}{AB}\) ⇒ AB2=BH.BC
b, Xét △EDC và △BAC có:
∠BAC=∠EDC (=90o) , ∠BCA chung
⇒ △EDC∼△BAC (g.g)
⇒ \(\dfrac{DC}{AC}=\dfrac{EC}{BC}\) ⇒ \(\dfrac{DC}{EC}=\dfrac{AC}{BC}\)
Xét △ADC và △BEC có:
\(\dfrac{DC}{EC}=\dfrac{AC}{BC}\) (C/m trên)
∠BCA chung
⇒ △ADC∼△BEC (c.g.c)
⇒ ∠ADC=∠BEC
c, từ b, △ADC∼△BEC
⇒ \(\dfrac{DA}{BE}=\dfrac{AC}{BC}\) (1)
Xét △AHC và △BAC có:
∠AHC=∠BAC (=90o) , ∠BCA chung
⇒ △AHC∼△BAC (g.g)
⇒ \(\dfrac{CH}{AC}=\dfrac{AC}{BC}\) (2)
Từ (1) và (2) ⇒ \(\dfrac{CH}{AC}=\dfrac{DA}{EB}\)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
DO đó: ΔABC\(\sim\)ΔHBA
Suy ra: AB/HB=BC/BA
hay \(AB^2=HB\cdot BC\)
b: \(\widehat{BMH}+\widehat{HBM}=90^0\)
\(\widehat{BNA}+\widehat{ABN}=90^0\)
mà \(\widehat{ABN}=\widehat{HBM}\)
nên \(\widehat{BMH}=\widehat{BNA}\)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
Suy ra: AB/HB=BC/BA
=>BH/AB=BC/BA(1)
hay \(AB^2=BH\cdot BC\)
Câu b đề sai rồi bạn
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>AB/HB=AC/HA
=>AB*HA=HB*AC
b: BC=căn 9^2+12^2=15cm
BI là phân giác
=>AI/AB=CI/BC
=>AI/3=CI/5=12/8=1,5
=>AI=4,5cm
c: S HAB/S HCA=(AB/CA)^2