K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>AB/HB=AC/HA

=>AB*HA=HB*AC

b: BC=căn 9^2+12^2=15cm

BI là phân giác

=>AI/AB=CI/BC

=>AI/3=CI/5=12/8=1,5

=>AI=4,5cm

c: S HAB/S HCA=(AB/CA)^2

8 tháng 3 2020

tự kẻ hình

a, xét tam giác ABC và tam giác HBA có : góc B chung

góc BAC = góc BHA = 90

=> tam giác ABC đồng dạng với tam giác HBA (g-g)

=>  AB/BH = AC/AH 

=> AB.AH = BH.AC 

b, xét tam giác BAH vuông tại H => HB^2 + HA^2 = AB^2 (Pytago)

BH = 3; AB = 5(gt)

=> 3^2 + AH^2 = 5^2

=> AH^2 = 16

=> AH = 4 do AH > 0

xét tam giác ABH có : BI là pg của góc ABH (gt)

=> AI/AB = IH/BH (tính chất)

=> AI+IH/AB+BH = AI/AB = IH/BH

=> AH/AB + BH = AI/AB = IH/BH 

có: AH = 4; AB = 5; BH = 3

=> 4/3+5 = AI/5 = IH/3

=> AI/5 = IH/3 = 1/2

=> AI = 5/2 và IH = 3/2

c,  góc CAH = 90 - góc HAB 

góc HBA = 90 - góc HAB 

=> góc CAH = góc HBA 

xét tam giác AHC và tam giác BHA có: góc AHC = góc BHA = 90

=> tam giác AHC đồng dạng với tam giác BHA (g-g)

=>  AC/AB = AH/HB

=> AC/AH = AB/HB 

BI là pg của tam giác AHB => AI/AH = AB/AB

CK là pg của tam giác AHC => CK/KH = AC/AH

=> AI/AH = CK/KH

=> KI // AC

9 tháng 5 2021

a, Xét △ABC và △HBA có:

∠AHB=∠BAC (=90o), ∠ABC chung

⇒△ABC∼△HBA (g.g)

⇒ \(\dfrac{AB}{BC}=\dfrac{BH}{AB}\) ⇒ AB2=BH.BC

b, Xét △EDC và △BAC có:

∠BAC=∠EDC (=90o) , ∠BCA chung

⇒ △EDC∼△BAC (g.g)

⇒ \(\dfrac{DC}{AC}=\dfrac{EC}{BC}\) ⇒ \(\dfrac{DC}{EC}=\dfrac{AC}{BC}\)

Xét △ADC và △BEC có:

\(\dfrac{DC}{EC}=\dfrac{AC}{BC}\) (C/m trên)

∠BCA chung

⇒ △ADC∼△BEC (c.g.c)

⇒ ∠ADC=∠BEC

 

 

 

 

9 tháng 5 2021

c, từ b, △ADC∼△BEC

⇒ \(\dfrac{DA}{BE}=\dfrac{AC}{BC}\) (1)

Xét △AHC và △BAC có:

∠AHC=∠BAC (=90o) , ∠BCA chung

⇒ △AHC∼△BAC (g.g)

⇒ \(\dfrac{CH}{AC}=\dfrac{AC}{BC}\) (2)

Từ (1) và (2) ⇒ \(\dfrac{CH}{AC}=\dfrac{DA}{EB}\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

DO đó: ΔABC\(\sim\)ΔHBA

Suy ra: AB/HB=BC/BA

hay \(AB^2=HB\cdot BC\)

b: \(\widehat{BMH}+\widehat{HBM}=90^0\)

\(\widehat{BNA}+\widehat{ABN}=90^0\)

mà \(\widehat{ABN}=\widehat{HBM}\)

nên \(\widehat{BMH}=\widehat{BNA}\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

Suy ra: AB/HB=BC/BA

=>BH/AB=BC/BA(1)

hay \(AB^2=BH\cdot BC\)

Câu b đề sai rồi bạn

26 tháng 2 2022

Cảm ơn bạn nhiều. Giải mình câu C nhé. Cảm ơn bạn

 

loading...  loading...