Tam giác ABC có AB > AC. Từ trung điểm M của BC vẽ một đường
thẳng vuông góc với tia phân giác của góc A, cắt tia phân giác tại H, cắt AB,
AC lầm lượt tại E và F. Chứng minh rằng:
a,EF=EC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
Bài 1:
a: Xét ΔABC có \(AC^2=AB^2+BC^2\)
nên ΔABC vuông tại B
b: XétΔABC có BC<AB<AC
nên \(\widehat{A}< \widehat{C}< \widehat{B}\)
Câu 17: Cho ABC có AB = AC và = 2 có dạng đặc biệt nào:
A. Tam giác cân B. Tam giác đều
C. Tam giác vuông D. Tam giác vuông cân
Câu 18: Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Độ dài cạnh BC là:
A. 7cm B. 12,5cm C. 5cm D.
Câu 19: Tam giác ABC có AB = 12cm, AC = 13cm, BC = 5cm. Khi đó vuông tại:
A. Đỉnh A B. Đỉnh B C. Đỉnh C D. Tất cả đều sai
Câu 20: Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC. Khẳng định nào sau đây sai?
A. ABM = ACM B. ABM= AMC
C. AMB= AMC= 900 D. AM là tia phân giác CBA
Câu 22: Cho ABC= DEF. Khi đó: .
A. BC = DF B. AC = DF
C. AB = DF D. góc A = góc E
Câu 23. Cho PQR= DEF, DF =5cm. Khi đó:
A. PQ =5cm B. QR= 5cm C. PR= 5cm D.FE= 5cm
Câu hỏi của Anh Nguyễn Bảo - Toán lớp 5 - Học toán với OnlineMath
Em xem link ở đây nhé! Bạn @đẹp trai...@ làm đúng rồi đấy
Bài 3:
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD
b: Ta có: ΔABD=ΔACD
nên \(\widehat{BAD}=\widehat{CAD}\)
c: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường cao
a, Vì AH là tia phân giác của ∠BAC
=> ∠BAH = ∠HAC = ∠BAC : 2
Xét △EAH vuong tại H và △FAH vuông tại H
Có: AH là cạnh chung
∠EAH = ∠FAH (cmt)
=> △EAH = △FAH (cgv-gn)
=> AE = AF (2 cạnh tương ứng)
Vì M là trung điểm của BC => MB = MC = BC/2
Qua C kẻ đường thẳng song song với AB cắt MF tại D
Ta có: CD // AB (cách vẽ) => ∠CDF = ∠AEF (2 góc đồng vị) (1) và ∠DCB = ∠ABC (2)
Xét △AEF có: AE = AF (cmt) => △AEF cân tại A => ∠AEF = ∠AFE (3)
Từ (1) và (3) => ∠AFE = ∠CDF hay ∠CFD = ∠CDF
Xét △CFD có: ∠CFD = ∠CDF (cmt) => △CFD cân tại C => CF = CD
Xét △CDM và △BEM
Có: ∠DCM = ∠EBM (cmt).
MC = MB (cmt)
∠CMD = ∠BME (2 góc đối đỉnh)
=> △CDM = △BEM (g.c.g)
=> CD = BE (2 cạnh tương ứng)
Mà CF = CD (cmt)
=> BE = CF
b, Ta có: AF = AC + CF (4) và AE = AB - BE (5)
Cộng 2 vế của (4) và (5) => AF + AE = AC + CF + AB - BE
Mà AF = AE và CF = BE
=> AE + AE = AC + AB
=> 2AE = AC + AB
=> AE = (AC + AB) : 2
Ta có: BE = AB - AE (6) và BE = CF mà CF = AF - AC => BE = AF - AC (7)
Cộng 2 vế của (6) và (7) => BE + BE = AB - AE + AF - AC => 2BE = AB - AC (AE = AF) => BE = (AB - AC) : 2
c, Xét △MBE có ∠MEA là góc ngoài của △ tại đỉnh E
=> ∠MEA = ∠EMB + ∠EBM => ∠AEF = ∠BME + ∠EBM => ∠AEF = ∠BME + ∠ABC
Xét △CFM có ∠MCA là góc ngoài của △ tại đỉnh C
=> ∠MCA = ∠CFM + ∠CMF => ∠ACB = ∠CFM + ∠CMF
Mà ∠CFM = ∠AEF (cmt) ; ∠CMF = ∠BME (2 góc đối đỉnh)
=> ∠ACB = ∠AEF + ∠BME
=> ∠ACB = ∠BME + ∠ABC + ∠BME
=> 2 . ∠BME + ∠ABC = ∠ACB
=> 2 . ∠BME = ∠ACB - ∠ABC
=> ∠BME = (∠ACB - ∠ABC) : 2