K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2020

a, Ta có: OA + AB = OB

và OC + CD = OD

Mà OA = OC (gt) ; AB = CD (gt)

=> OB = OD 

=> △OBD cân tại O

b, Vì ON là tia phân giác của xOy => xON = NOy = xOy : 2 = 65o : 2 = 32,5o

Cách 1: Xét △OAM và △OCM 

Có: OA = OC (gt)

    AOM = COM (cmt)

   OM là cạnh chung

=> △OAM = △OCM (c.g.c)

=> AMO = CMO (2 góc tương ứng)

Mà AMO + CMO = 180o (2 góc kề bù)

=> AMO = CMO = 180o : 2 = 90o

Xét △BON và △DON

Có: OB = OD (cmt)

    BON = DON (cmt)

   ON là cạnh chung

=> △BON = △DON (c.g.c)

=> BNO = DNO (2 góc tương ứng)

Mà BNO + DNO = 180o (2 góc kề bù)

=> BNO = DNO = 180o : 2 = 90o     

Cách 2: Vì OA = OC (gt) => △AOC cân tại O => CAO = (180o - AOC) : 2 =  (180o​ - 65o) : 2 = 115o : 2 = 57,5o 

Xét △OAM có: MAO + AMO + MOA = 180o (tổng 3 góc trong tam giác)

=> 57,5o + AMO + 32,5o = 180o 

=> AMO = 180o - 32,5o - 57,5o 

=> AMO = 90o 

Vì △OBD cân tại O => DBO = (180o - BOD) : 2 =  (180o​ - 65o) : 2 = 115o : 2 = 57,5o 

Xét △BON có: NBO + BNO + BON = 180o (tổng 3 góc trong tam giác)

=> 57,5o + BNO + 32,5o = 180o 

=> BNO = 180o - 32,5o - 57,5o 

=> BNO = 90o 

c, Vì AMO = 90o => AM ⊥ ON hay AC ⊥ ON (M \in  AC)   (1)

Vì BNO = 90o => BN ⊥ ON hay BD ⊥ ON (N \in  BD)       (2)

=> Từ (1) và (2) => AC // BD (dhnb)

29 tháng 4 2018

a: Xét ΔOAD và ΔOBC có 

OA=OB

\(\widehat{O}\) chung

OD=OC

Do đó: ΔOAD=ΔOBC

27 tháng 5 2019

3 tháng 8 2019

5 tháng 11 2019

8 tháng 12 2016

Ta có hình vẽ:

x O y A B C D

a/ Xét tam giác OAD và tam giác OBC có:

OA = OB (GT)

\(\widehat{O}\): góc chung

OC = OD (GT)

Vậy tam giác OAD = tam giác OBC (c.g.c)

b/ Ta có: tam giác OAD = tam giác OBC (câu a)

=> \(\widehat{OAD}\)=\(\widehat{OBC}\) (2 góc tương ứng)

\(\widehat{OAD}\)+\(\widehat{DAC}\) = 1800 (kề bù)

\(\widehat{OBC}\)+\(\widehat{CBD}\) = 1800 (kề bù)

=> \(\widehat{CAD}\)=\(\widehat{CBD}\)(đpcm)

8 tháng 12 2017

cảm ơn bn nha

11 tháng 3 2020

Câu hỏi của nguyenvandat - Toán lớp 7 - Học toán với OnlineMath