Tìm x số tự nhiên biết :x+y+z biết :2x+y=1; 2y+z=2 và 2z +x =3
Giải giùm mik nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x+1 là Ư(3x+2)
=>3x+2 chia hết cho 2x+1
<=>2(3x+2) chia hết cho 2x+1
<=>6x+4 chia hết cho 2x+1
<=>3(2x+1)+1 chia hết cho 2x+1
<=>1 chia hết cho 2x+1
=>2x+1 là Ư(1)
=>Ư(1)={-1;1}
Có:
TH1: 2x+1=-1
<=>2x=-2
<=>x=-1(t/m)
TH2: 2x+1=1
<=>2x=0
<=>x=0(t/m)
Vậy x thuộc {-1;0}
b)xy+x+y=2
<=>x(y+1)+y+1=3
<=>(y+1)(x+1)=3
=>y+1 và x+1 thuộc Ư(3)
=>Ư(3)={-1;1;-3;3}
Ta có bảng sau:
x+1 | -1 | 1 | -3 | 3 |
y+1 | -3 | 3 | -1 | 1 |
x | -2 | 0 | -4 | 2 |
y | -4 | 2 | -2 | 0 |
NX | loại | t/m | loại | t/m |
Vậy các cặp số (x;y) thỏa mãn là (0;2) và (2;0)
a,(2x+1)(y-3)=12
⇒⇒2x+1 và y-3 ∈∈Ư(12)={±1;±2;±3;±4;±6;±12}{±1;±2;±3;±4;±6;±12}
2x+1 | 1 | -1 | 2 | -2 | 3 | -3 |
y-3 | 12 | -12 | 6 | -6 | 4 | -4 |
x | 0 | -1 | 1212 | −32−32 | 1 | -2 |
y | 15 | -9 | 9 | 3 | 7 | -1 |
=>x=0,y=15
c) Ta có: \(36^{25}=\left(6^2\right)^{25}=6^{50}\)
\(25^{36}=\left(5^2\right)^{36}=5^{72}\)
Ta có: \(6^{50}=\left(6^5\right)^{10}=7776^{10}\)
mà \(5^{70}=\left(5^7\right)^{10}=78125^{10}\)
nên \(6^{50}< 5^{70}\)
mà \(5^{70}< 5^{72}\)
nên \(6^{50}< 5^{72}\)
hay \(36^{25}< 25^{36}\)
b,/2x-5/=13
\(\Rightarrow\)\(\orbr{\begin{cases}2x-5=-13\\2x-5=13\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=-13+5=-8\\2x=13+5=18\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-8:2=-4\\x=18:2=9\end{cases}}\)
vậy x\(\in\){9,-4}
\(\dfrac{x+1}{2}=\dfrac{y-5}{3}=\dfrac{z-4}{4}=\dfrac{x+1+y-5-z+4}{2+3-4}\)
\(=\dfrac{7}{1}=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=7.2-1=13\\y=7.3+5=26\\z=7.4+4=32\end{matrix}\right.\)
Áp dụng t/c dtsbn:
\(\dfrac{x+1}{2}=\dfrac{y-5}{3}=\dfrac{z-4}{4}=\dfrac{x+1+y-5-z+4}{2+3-4}=\dfrac{7+1+4-5}{1}=7\\ \Rightarrow\left\{{}\begin{matrix}x+1=14\\y-5=21\\z-4=28\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=13\\y=26\\z=32\end{matrix}\right.\)
Vì \(\left(2x+y\right)=1;2y+z=2;2z+x=3\)
\(\Rightarrow2x+y+2y+z+2z+x=1+2+3\)
\(\Rightarrow3x+3y+3z=6\)
\(\Rightarrow x+y+z=2\)