K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2018

Chọn đáp án C.

Bình luận:

Quay lại với lời giải ở trên: Ta chia cả 2 vế của (*) cho x chính là chia cả 2 vế của (2) cho  

30 tháng 9 2019

Hàm số bậc nhất đồng biến suy ra a > 0 hay m > 2

m thuộc đoạn [-2018; 2018] suy ra m thuộc {3; 4; ...; 2018}

Vậy có 2016 giá trị nguyên của m cần tìm.

Chọn D.

27 tháng 7 2018

Đáp án D.

1 tháng 10 2018

7 tháng 9 2019

Đáp án A.

Ta có y ' = − 3 x 2 − 6 x + 4 m =>Hàm số nghịch biến trên  − ∞ ; 0

⇔ y ' ≤ 0 ∀ x ∈ − ∞ ; 0 ⇔ 4 m ≤ 3 x 2 + 6 x ∀ x ∈ − ∞ ; 0

Bảng biến thiên:

  ⇒ 3 x 2 + 6 x ≥ − 3 ∀ x ∈ − ∞ ; 0 ⇒ 4 m ≤ 3 x 2 + 6 x ∀ x ∈ − ∞ ; 0

⇔ 4 m ≤ − 3 ⇔ m ≤ − 3 4 ⇒ m ∈ − 2018 ; − 3 4 m ∈ ℤ

 

14 tháng 3 2018

NV
4 tháng 8 2021

Đặt \(g\left(x\right)=-x^4+8x^2+m\Rightarrow g'\left(x\right)=-4x^3+16x\)

\(g'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=0\\x=2\end{matrix}\right.\)

\(f\left(-1\right)=\left|m+7\right|\) ; \(f\left(0\right)=\left|m\right|\) ; \(f\left(2\right)=\left|m+16\right|\) ; \(f\left(3\right)=\left|m-9\right|\)

\(\Rightarrow max\left\{f\left(x\right)\right\}=max\left\{\left|m-9\right|;\left|m+16\right|\right\}\) 

TH1: \(\left\{{}\begin{matrix}\left|m+16\right|\ge\left|m-9\right|\\\left|m+16\right|=2018\end{matrix}\right.\) \(\Rightarrow m=2002\)

TH2: \(\left\{{}\begin{matrix}\left|m+16\right|\le\left|m-9\right|\\\left|m-9\right|=2018\end{matrix}\right.\) \(\Rightarrow m=-2027\)

Có 2 giá trị của m

4 tháng 5 2018

Đáp án D

 

25 tháng 4 2017

Do đó phương trình có nghiệm khi

Vậy số giá trị nguyên của  α

nhỏ hơn 2018 thỏa mãn yêu cầu

đề bài là 

 

 

 

11 tháng 9 2019

Đáp án D 

6 tháng 11 2017

Đáp án D

Cách giải:

=> Hàm số đồng biến trên 

 Phương trình (1) có 2 nghiệm phân biệt 

Theo đinh lí Viet ta có

Khi đó, để hàm số đồng biến trên khoảng (1;+∞) thì

 ( vô lí )

Vậy m ≥ 13

Mà 

Số giá trị của m thỏa mãn là: 2018 - 13 + 1 = 2006