Cho \(\Delta ABC\) vuông tại A có AB=6cm, AC=8cm; đường phân giác BI. Kẻ IH vuông góc với BC (H\(\in\)BC), gọi K là giao điểm của BI là đường trung trực của AB và IH.
a) Tính BC?
b)c/m BK=BC từ đó suy ra BI là đường trung trực của KC
c)c/m IB+IC+IK<20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé
a)
Áp dụng định lý Py-ta-go vào \(\Delta ABC:\)
\(BC^2=AB^2+AC^2\\ \Rightarrow BC^2=8^2+6^2\\ \Rightarrow BC^2=64+36\\ \Rightarrow BC^2=100\\ \Rightarrow BC=10\left(cm\right)\)
b)
Xét \(\Delta BGC\) và \(\Delta DGC\) có:
\(AB=AD\left(GT\right)\\ AG:chung\\ \widehat{BAC}=\widehat{DAC}\left(=90^o\right)\)
\(\Rightarrow\Delta BGC=\Delta DGC\left(c-g-c\right)\)
c)
Xét \(\Delta BCD\) có:
\(AB=AD\left(GT\right)\\ \dfrac{AG}{DG}=\dfrac{2}{6}=\dfrac{1}{3}\Rightarrow\dfrac{CG}{AC}=1-\dfrac{1}{3}=\dfrac{2}{3}\)
=> G là trọng tâm của \(\Delta BCD\)
=> DG là đường trung tuyến của \(\Delta BCD\) ứng với cạnh BC
Hay DG đi qua trung điểm BC
VẼ By là tia phân giác của \(\widehat{ABC}\)CẮT AC TẠI G
A) XÉT \(\Delta BAG\)VÀ \(\Delta BEG\)CÓ
\(\widehat{BAG}=\widehat{BEG}=90^o\)
BG LÀ CẠNH CHUNG
\(\widehat{B_1}=\widehat{B_2}\)( LẬP LUẬN)
=>\(\Delta BAG\)=\(\Delta BEG\)( CH-GN)
=>BA = BE
\(\Rightarrow\Delta ABE\)CÂN TẠI B ( ĐPCM)
VÌ \(\Delta BAG\)=\(\Delta BEG\)(CMT)
=> AG = GE
XÉT \(\Delta AGD\)VÀ \(\Delta EGC\)CÓ
\(\widehat{G_1}=\widehat{G_2}\)( ĐỐI ĐỈNH )
AG = GE ( CMT )
\(\widehat{DAG}=\widehat{CEG}=90^o\)
=>\(\Delta AGD\)=\(\Delta EGC\)( G-C-G )
=> AD = EC
TA CÓ
\(BA+AD=BD\)
\(BE+EC=BC\)
MÀ AD = EC(CMT) VÀ \(BA=BE\)(CMT)
=>\(BD=BC\)
=> \(\Delta BDC\)CÂN TẠI B
XÉT \(\Delta BDC\)CÂN TẠI B
\(\Rightarrow\widehat{BCD}=\frac{180^o-\widehat{B}}{2}\left(1\right)\)
XÉT \(\Delta BAE\)CÂN TẠI B
\(\Rightarrow\widehat{BEA}=\frac{180^o-\widehat{B}}{2}\left(2\right)\)
TỪ (1) VÀ (2)
\(\Rightarrow\widehat{BCD}=\widehat{BEA}\)
MÀ HAI GÓC NÀY Ở VỊ TRÍ ĐỒNG VỊ BẰNG NHAU
=>\(AE//CD\)(ĐPCM)
b) vì AE // CD HAY AF // CD \(\Rightarrow\widehat{FAC}=\widehat{DCA}\)( SO LE TROG )
XÉT \(\Delta FAM\)VÀ \(\Delta DCM\)CÓ \(\widehat{FAC}=\widehat{DCA}\)HAY\(\widehat{FAM}=\widehat{DCM};AM=CM\left(GT\right);\widehat{AMF}=\widehat{CMF}\left(DD\right)\)
=>\(\Delta FAM\)=\(\Delta DCM\)(G-C-G)
\(\Rightarrow FM=DM\)
XÉT\(\Delta ADM\)VÀ \(\Delta CFM\)CÓ \(AM=CM\left(GT\right);\widehat{AMD}=\widehat{CMF}\left(GT\right);FM=DM\left(CMT\right)\)
=>\(\Delta ADM\)=\(\Delta CFM\)(C-G-C)
\(\Rightarrow\widehat{DAM}=\widehat{FCM}=90^o\)
mà\(\widehat{FCM}=90^o\)
\(\Rightarrow CF\perp AC\left(ĐPCM\right)\)
a: BC=10cm
b: Xét ΔABK vuông tại A và ΔHBK vuông tại H có
BK chung
\(\widehat{ABK}=\widehat{HBK}\)
Do đó: ΔABK=ΔHBK
a)áp dụng định lý pitago ta có BC^2=AB^2+AB^2=8^2+6^2=100
=>BC=10
b ) Ta có AB = AD ( gt )
=> CA là đường trung tuyến của BD
CA vuông góc với BD ( t/g ABC vuông tại A )
=> Ca là đường cao của BD
mà CA là đường trung tuyến của BD ( chứng minh trên )
t/g BCD cân tại C
=> CA cũng là p/g của t/g ABC
=> góc BCA = góc DCA
BC = CD ( t/g BCD cân tại C )
EC : cạnh chung
suy ra t/g BEC = t/g DEC ( c - g - c )
c ) Trên trung tuyến CA có CE/AC = 6-2/6 = 2/3
ba đường trung tuyến của t/g BCD đồng quy tại E
=> DE là đường trung tuyến của BC
=> DE đi qua trung điểm BC
GIẢI
áp dụng định lí pi-ta-go vào trong tam giác vuông ABC
ta có : \(BC^2=AB^2+AC^2\)
hay \(BC^2=6^2+8^2\)
\(\Rightarrow BC^2=100\)
\(\Rightarrow BC=10cm\)
ta có : \(HC=BC-BH\)
\(\Rightarrow HC=10-5=5cm\)
áp dụng hệ thức lượng vào trong tam giác vuông ABC
ta có : \(AH^2=BH.HC\)
\(\Rightarrow AH^2=5.5\)
\(\Rightarrow AH^2=25\)
\(\Rightarrow AH=5cm\)
vậy : \(BC=10cm\)
\(HC=5cm\)
\(AH=5cm\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó: \(\dfrac{AD}{6}=\dfrac{1}{2}\)
hay AD=3(cm)
Vậy: AD=3cm
b. Vì AB < AC < BC ⇒ ∠C < ∠B < ∠A (quan hệ giữa góc và cạnh đối diện trong tam giác)
K là giao điểm của BI là đường trung trực của AB và IH??