K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2015

câu a thì đặt cho nó là a rồi nhân 1/2 vào a thì nó là dạng kiểu phân số thoe qui luật ấy mà

còn câu sau thì 

22 tháng 7 2017

@@ gửi ít thôi bạn

23 tháng 7 2017

bạn lm từng bài cg đc mà

27 tháng 3 2016

là 4000000 đó nha

12 tháng 8 2018

1)  \(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\frac{x+1}{6}\)

<=>  \(\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)

<=>  \(x+1=0\)  (do  1/2 + 1/3 + 1/4 - 1/5 - 1/6 khác 0)

<=>  \(x=-1\)

Vậy...

12 tháng 8 2018

\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)

<=>  \(\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1\)

<=>  \(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)

<=>  \(\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)

<=>  \(x+2010=0\)  (do  1/2009 + 1/2008 + 1/2007 - 1/2000 - 1/1999 - 1/1998 khác 0)

<=>  \(x=-2010\)

Vậy....

12 tháng 8 2018

1,

x+1/2+x+1/3+x+1/4-x+1/5-x+1/6=0

(x+1)(1/2+1/3+1/4-1/5-1/6)=0

vì 1/2+1/3+1/4-1/5-1/6 khác 0

suy ra x+1=0 suy ra x=-1

19 tháng 12 2021

Bài 13: 

a: =>20-x=15-8+13=20

hay x=0

24 tháng 2 2020

Đặt \(A=1-x+x^2-x^3+...-x^{1999}+x^{2000}\)

\(B=1+x+x^2+x^3+...+x^{1999}+x^{2000}\)

Ta có : \(\left(x^2-1\right).P\left(x\right)=\left(x+1\right)A\left(x-1\right)B\)

\(=\left(x^{2001}+1\right)\left(x^{2001}-1\right)\)

\(=\left(x^{2001}\right)^2-1=\left(x^2\right)^{2001}-1^{2001}\)

\(=\left(x^2-1\right)\left(x^{4000}+x^{3998}+x^{3996}+...+x^2+1\right)\)

\(\Rightarrow P\left(x\right)=x^{4000}+x^{3998}+...+x^2+1\)

Theo đề bài ta có : \(P\left(x\right)=a_o+a_1x+...+a_{4000}x^{4000}\)

Do đó : hệ số chẵn sẽ = 1, hệ số lẻ = 0

\(\Rightarrow a_{2001}=0\)

Chúc bạn học tốt !!

20 tháng 9 2019

\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)

\(\Rightarrow\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1\)

\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+1010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)

\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\right)=\left(x+2010\right)\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}\right)\)

\(\Rightarrow x+2010=0\) vì \(0< \frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}< \frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}\)

\(\Rightarrow x=-2010\)

20 tháng 9 2019

                                                            Bài giải

\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)

\(\Rightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+10}{2000}+1\right)+\left(\frac{x+11}{1999}+1\right)+\left(\frac{x+12}{1998}+1\right)\)

\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)

\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-(\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998})=0\)

\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)

\(\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)

\(\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)\ne0\) nên \(x+2010=0\)

                                                                                                                          \(x=0-2010=-2010\)