Tìm 3 số tự nhiên a,b,c biết \(\frac{a}{b}=\frac{5}{9};\frac{a}{c}=\frac{10}{7}\)và BCNN(a,b,c) là 3150
Giải rõ giùm mình nhé. Đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{5}\Leftrightarrow\frac{3a+2b}{6}=\frac{a+b}{5}\\ \Rightarrow15a+10b=6a+6b\Rightarrow9a+4b=0\)
mà a,b là số tự nhiên nên \(a,b\ge0\)
nên \(9a+4b\ge0\)
dấu bằng xảy ra khi a=b=0
a/2 >hoặc = a/5 ( xảy ra giấu bằng với a=0)
b/3> hoặc = b/5 ( xảy randaaus bằng với a=0
Do đó : a/2 +b/3 = a/5 + b/5 chỉ trong trường hợp a=b=0
a \(\frac{a}{3}+\frac{b}{4}=\frac{a+b}{3+4}\Leftrightarrow\frac{4a+3b}{12}=\frac{a+b}{7}\Leftrightarrow28a+21b=12a+12b\)
\(\Leftrightarrow\left(16a+9b\right)+\left(12a+12b\right)=12a+12b\)
\(\Leftrightarrow16a+9b=0\)
Vì \(16a\ge0;9b\ge0\) ( vì a;b là số TN )
=> \(16a+9b\ge0\)
Dấu "=" xảy ra <=> a = b = 0
b) \(\frac{52}{9}=5+\frac{7}{9}=5+\frac{1}{\frac{9}{7}}=5+\frac{1}{1+\frac{2}{7}}=5+\frac{1}{1+\frac{1}{\frac{7}{2}}}=5+\frac{1}{1+\frac{1}{3+\frac{1}{2}}}\)
\(\Rightarrow a=1;b=3;c=2\)
\(\frac{52}{9}=5+\frac{7}{9}=5+\frac{1}{1+\frac{2}{7}}=5+\frac{1}{1+\frac{1}{3+\frac{1}{2}}}\\ \)
(a;b;c) =(1;3;2)
I don't now
or no I don't
..................
sorry
a) ta có:\(\frac{a}{b}=\frac{5}{8}\Rightarrow8a=5b\)
ab=360\(\Rightarrow5ab=1800\Rightarrow8a^2=1800\Rightarrow225=a^2\Rightarrow a=15\)
đề câu b hình như sai bạn ạ
1/ P = 123456....20132014
Từ 1 - 9 có 9 chữ số
từ 10 -99 có: [[99-10]: 1 + 1]x 2 = 180 chữ số
từ 100 - 999 có: [[999-100]: 1 + 1] x 3 = 2700 chữ số
từ 1000 - 2014 có: [[2014 - 1000]: 1 + 1] x 4 = 4060 chữ số
=> P có: 4060 + 2700 + 180 + 9 = 6949 chữ số
2/
n là số n tố > 3 => n lẻ => 22 lẻ
=> n2+ 2015 chia hết cho 2 nên là hợp số
3/
Gọi 1994xy là A. A chia hết cho 72 => A chia hết cho 8 và 9
Vì A chia hết cho 8 nên A chẵn => y E {0; 2; 4; 6; 8}
* nếu y = 0 => x = 4
* nếu y = 2 => x = 2
* nếu y = 4 => x E {0; 9}
* nếu y = 6 => x = 7
* nếu y = 8 => x = 5
Vậy [x,y] = [0;4],[2;2],[4;0 và 9],[6;7],[8;5]
4/
x/9 - 3/ y = 1/18
=> 2x/18 - 3/y = 1/18
=> 3/y = 1/18 - 2x/18
=> 3/y = 1-2x/18
=> y - 2xy = 54=> y[1-2x] = 54
mà 1 - 2x lẻ nên y chẵn
mà y thuộc ước 54 => y E {-2;2;-6;6;-18;18;-54;54}
y | -2 | 2 | -6 | 6 | -18 | 18 | -54 | 54 |
1-2x | -27 | 27 | -9 | 9 | -3 | 3 | -1 | 1 |
2x | 28 | -26 | 10 | -8 | 4 | -2 | 2 | 0 |
x | 14 | -13 | 5 | -4 | 2 | -1 | 1 | 0 |
vậy: [x,y] = [14;-2],[2;-13],[-6;5],[6;-4],[-18;2],[18;-1],[-54;1],[54;0]
5/
Theo đề bài, ta có:
b E BC[14, 21]
mà b nhỏ nhất nên b = 42
=> 14a = 42 . 5
=> a = 15;
=> 21c = 28 . 42
=> c = 56;
từ đó suy ra
6d = 11 . 56
=> d = 308/3
=> d k là số tự nhiên. Vậy a,b,c,d E tập rỗng
Ta có \(\frac{386579}{512}=\frac{2003}{\frac{512}{193}}=\frac{2003}{2+\frac{3}{4+\frac{5}{a+\frac{2}{b}}}}\)
\(\Rightarrow2+\frac{3}{4+\frac{5}{a+\frac{2}{b}}}=\frac{512}{193}\)
\(\Rightarrow\frac{3}{4+\frac{5}{a+\frac{2}{b}}}=\frac{126}{193}=\frac{3}{\frac{193}{42}}\)
\(\Rightarrow4+\frac{5}{a+\frac{2}{b}}=\frac{193}{42}\)
\(\Rightarrow\frac{5}{a+\frac{2}{b}}=\frac{25}{42}=\frac{5}{\frac{42}{5}}\)
\(\Rightarrow a+\frac{2}{b}=\frac{42}{5}=\frac{2}{5}+\frac{40}{5}=8+\frac{2}{5}\)
Do hai biểu thức bằng nhau nên đồng nhất hệ số
\(\Rightarrow\hept{\begin{cases}a=8\\b=5\end{cases}}\)