cho tam giác ABC có phương trình cạnh AB :5x-3y+2=0 ,các đường cao qua đỉnh A và B lần lượt là (d1):4x-3y+1=0 ;(d2):7x+2y-22=0 .Lập phương trình 2 cạnh AB và AC và đường cao thứ 3
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
18 tháng 2 2023
Tọa độ A là:
2x-3y+12=0 và 2x+3y=0
=>x=-3 và y=2
Tọa độ M, M là trung điểm của BC là M(x;-3x/2)
Phương trình BC sẽ là: 3x+2y+c=0
Thay x=4 và y=-1 vào BC, ta được:
3*4+2*(-1)+c=0
=>c+12-2=0
=>c=-10
=>BC: 3x+2y-10=0
=>B(x;5-1,5x); y=5-1,5x
B(x;5-1,5x); C(4;-1); M(x;-3x/2)
Theo đề, ta có: x=(4+x)/2 và -1,5x=(5x-1)/2
=>2x=x+4 và -3x=5x-1
=>x=4 và -8x=-1(loại)
=>Không có điểm B nào thỏa mãn
NV
Nguyễn Việt Lâm
Giáo viên
21 tháng 3 2021
Bạn coi lại đề, 2 đường thẳng xuất phát từ B nhưng lại song song với nhau, điều này hoàn toàn vô lý
A = AB giao d1=> Tọa độ A là nghiệm của hệ : \(\begin{cases}5x-3y+2=0\\4x-3y+1=0\end{cases}\)<=> \(\begin{cases}x+1=0\\4x-3y+1=0\end{cases}\)<=> \(\begin{cases}x=-1\\y=\frac{1+4x}{3}\end{cases}\)<=> \(\begin{cases}x=-1\\y=-1\end{cases}\)=> A (-1; -1)
Đường thẳng d2 có vtpt là \(\vec{n_2}\left(7;2\right)\) chính là vtcp của đường thẳng AC , điểm A thuộc AC
=> Phương trình đường thẳng AC có dạng: \(\begin{cases}x=-1+7t\\y=-1+2t\end{cases}\)(t \(\in\) R)
Gọi H = d1 \(\cap\) d2 => tọa độ H là nghiệm của pt: \(\begin{cases}7x+2y-22=0\\4x-3y+1=0\end{cases}\) <=> \(\begin{cases}x=\frac{64}{29}\\y=\frac{95}{29}\end{cases}\)=> H (\(\frac{64}{29};\frac{95}{29}\))
Đường cao CH đi qua H và có vtcp chính là vtpt của AB là \(\vec{n}\) (5; -3)
=> Phương trình CH có dạng : \(\begin{cases}x=\frac{64}{29}+5t\\y=\frac{95}{29}-3t\end{cases}\)
B = AB \(\cap\) d2 => Tọa độ B là nghiệm của hệ : \(\begin{cases}5x-3y+2=0\\7x+2y-22=0\end{cases}\) <=> \(\begin{cases}x=2\\y=4\end{cases}\)=> B (2;4)
Đường thẳng BC đi qua B , có vtcp chính là vtpt của d1 là \(\vec{n_1}\)(4;-3)
=> phương trình đường thẳng BC là: \(\begin{cases}x=2+4t\\y=4-3t\end{cases}\)
chỉ bài này mk với